. DI fitE COPY

AD-A223 086

FO 06 U 0fs

CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Guideline to Select,
Configure, and Use an Ada Runtime
Environment =~ F
‘G L’L r-’f [n

A

MAY 2 -

'bt/ ‘:“

4 IG»VCH Q!
NG (-""f v .

l’ ,./-'.‘ R
Depa Fl 0 oo i,
’ i W C JeE mcsi‘ Y

CIN:; C02 092LA 0001
15 FEBRUARY 1989

\

.."*T’u i <y [;:': ""‘*‘-—-—-«-w -
/ f r\ HI (’}‘ 1 Al \\ w e ?d

L 90 002070

R e

S
PATMA Qe ey

GUIDELINE TO SELECT, CONFIGURE, AND USE

AN ADA RUNTIME ENVIRONMENT

FINAL REPORT

PREPARED FOR:
U.S. Army HQ CECOM
Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

PREPARED BY:

LabTek Corporation
8 Lunar Drive
Woodbridge, CT 06525

DATE:
30 September 1988

Accession For i
NTIS GRA&T
DTIC TAB ‘

Unannou:iced O

Justification_________;

By.

Availability Codes
Aveil nud/or

Dist Special

Al |

Ada-86 is a trademark of SofTech Inc.

ARTK is a trademark of Alsys.

DDC-I Ada Compiler System and DACS-80x86 are trademarks of DDC-I, Inc.
DEC, VAX V. LN, MicroVAX and VMS are trademarks of Digital Equipment Corp
IBM is a trademark of International Business Machines Corp.

Intel and iSBC, ASM86, LIB86, LINK86, and LOC86 are trademarks of Intel Corp.
M68000, MC68881, MC68010, and MC68020 are trademarks of Motorola Corp.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

TeleSOFT and TeleGen 2 are trademarks of TeleSOFT.

UNIX is a trademark of Bell Laboratories.

VADS is a registered trademark of VERDIX Corp.

VRTX, VRTX32 are trademarks of Ready Systems.

EXECUTIVE SUMMARY

VThe Ada Language has incorporated many features such as tasking, dynamic storage
management, and exception handling that require substantial execution-time support. Most
of these features were not previously available in commonly used real-time languages, but
were instead provided by an separatea;xecutive . The inclusion of these features into the
language expands the possibility for transportable and reusable software, but complicates
the software development process to some degree. Engineers. that previously had
familiarity with their own executives, now are forced to accept the code of a compiler
vendor for the execution-time support. This guide has been written to help software
developers in the difficult task of selecting, configuring, and using a runtime that will meet

the needs of their application. ~.

!

The wide variety of applications for which Ada is used necessitates considerable flexibility
within the implementation of the runtime code. Different algorithms for tasking, storage
management, interrupt handling, and exception propagation can radically effect the
behavior of real-time programs. Variations among compilers for the same processor can be
as great as a factor of six in runtime size and a factor of eleven in tasking performance. It is
therefore essential that software developers completely understand the characteristics of
the available runtimes prior to selecting one for use on a project.\Due to the cost and time
involved in a compiler procurement (runtime source code can cost'as much as $250,000), it
is ofien difficult to change to a new compiler implementation aftef’ a poor choice has been
made. Unfortunately, a compiler that is good for one applicatinr} may not necessarily be
proper for other applications. Therefore, it is more a matter bf matching a compiler

implementation to an appuication rather tnan simply finding "the best compiler”,

This guide lists all of the known (validated) Ada compilers that are developed for use in
embedded applications. For each compiler, the supplier was contacted and asked specific
questions about their implementation. As much information as possible was obtained from
the suppliers to be summarized in the report. Performance benchmarks are included as a
rough efficiency comparison among many of the implementations. The difficulty in
obtaining this information cannot be overstated. Frequent letters with follow-up phones
calls were necessary to obtain answers to even a few questions. Just as with the compiler
implementations, substantial variation exists among compiler vendors in their willingness to
provide detailed literature. The effort that went into collecting this information convinced
the researchers that such a guide was worthwhile. For each individual project to go through
a collection effort is a tremendous expenditure of effort and is unlikely to be as complete as

this guide.

Finally, guidance is provided on how 10 proceed with the selection process, what questions
to ask once the the choice of compilers is narrowed down to one or two, and what to do
after the compiler and runtime have been selected. Special attention is paid to areas that

experience has shown to be particularly troublesome. These include:

1.) Maintaining configuration control over variations in the runtime; insuring that new
device drivers which are configured into the runtime do not violate runtime
conventions, especially with the processor state (privilege, interrupt level, memory

management registers, etc.); and,

2.) Taking care not to extend the worst-case interrupt latency by allowing interrupts to

be disabled for an extended period.

" These types of problem usually do not manifest themselves in obvious ways, but rather
result in working but unreliable systems. They may pass the acceptance testing and operate

properly for months only to fail in a catastrophic fashion during a critical moment.

It is hoped that this guide will assist software developers through some of the problems in
adopting Ada for real-time embedded projects. By providing information on how Ada
implementations operate, there will be a reduction in the uncertainty associated with
switching from assembly language executives, where every aspect is provided in minute

detail, to Ada where the executive functions appear as a black box (or magic).

Table of Contents

1. Introduction

1.1 Backgrdund

1.2 Purpose and Intent

1.3 Definitions ...

1.4 Organization of Document

1.5 How to Best Utilize This Document

2. Approach . .-

3. Ada Runtime Features

3.1 Dynamic Memory Management

3.2 Processor Management

3.3 Interrupt Managementc.cceeevuvunnnes

3.4 Time Management

3.5 Exception Management .

3.6 Rendezvous Management

3.7 Task Activation

3.8 Task Termination

3.9 1/O Management

3.10 Commonly Called Code Sequences

3.11 Target Housekeeping Functions

4. Bare Machine Targets

4.1 PIWG Benchmarks

4.2 Vendor Address Listing

Table 1. Bare Machine Targeted Compilers by Processor ...
1750A

Table of Contents

BOXBOcuorrecnssnesnsersassnasesnanssnsssssssnsssssssssassnssssnssssssssssossasasessasessasssansssssassessssersassensassss 19
680x0 . ceeestsasssasas et aas sne Rt s s s eRas Rt b s s et es 22
32032 .25
VAX PTOCESSOTS .evererearnanesssssasersasssssstssosnssssassssssssassassassssssssesssssssonsasassssssssssssssassasssses 25
CAPS/AAMP seesesases s sase e n s as s bttt anes 26
POWETNOAE ..couecercicriine crrrmsssssssssestnnsissnsassssmsanimssasecsssassassssassasessasessassassssns 26
Table II. Bare Machine Targeted Compilers by Vendorscocovevvueceescaccnceccance. 27
Vendor Supplied Information reessserrerttsssssessesetsasasasasasesasaeRersasesesasres 28
AlTech Software Engineering, Ltd.ccocoiennivncnnsncnrescinsscsissesnns 28

ALSYS .oeceeeenesesesrsrassinncnessssasessssstsrassssssrassssssansssaesssenessstnnsasstsnsnestsseaasessnes 36

CAP Industry, Ltd.coevevecrinncccennnnee . veresnenaensd9
DDC-1 SRUROOON
Digital Equipment Corp. setsesasenssasne et asps bt e et sensanes 81
Gould, Inc. . treeseessersressessnesaesseraresseressseaseraessasanrennes 83
Intermetrics, INC. ...ccconeecenncenccnssnnncesencnsssncnsesesencaens . 85
RaAtiONalceeeeeereeecrreiscssasanessssncsssssssessssssnsssossessssssssanssssssssssessnsnsens 91
SofTech, Inc. w126
System Designers Software, Inc. vererseneenss 148
Tartan Laboratories, Inc. . .162
TeleSOft, INC. uveeerererrercreeraneenssssnessenssesnassssssnesessessssessssensasessrsonsane 174

TLD Systems, Ltd. reeessnesassssseasasasasas 189
VErdix COTP.ccocoiinrnenssecnsnensssssisscscssssssssasasssssesassasasasssssssssssassasasass ..196
Vendor Information Not Available .. crasserensasss st nsasasaassaes 219
Advanced Computer Techniques COrp.crnisisinsesiensessssssaensesansens 219
Harris Corp. 220
Rockwell International crssessasssnsasnsasastsestsaane 221

«1i-

Table of Contents

System Designers Software, Inc. 222
TeleSoft/Intel Corp./Tele LOGIC ... 223

TeleSoft, Inc. 224

Verdix Corp. 227

S. Application Characteristics w229
5.1 ElectroniC WATTAreccoovinineecnennsnscsssessssacnsesssessasssssssasnssnsssssssasasnsasssssessssssssasassss 230
5.1.1 Radar Systems ..230

5.1.2 Electronic Counter Measures (ECM)ccccvvuuuenene. 231

5.1.3 SigNal PrOCESSING ..cucuvrcrninreesnsessmssnsssnsssasensasessassssessasessssassssensessnsssssssssssssssssssens 231

5'.2 Weapon GUIAANCEccovevirsiunenennsessnenssassssessassssssssssssaseasessnsesssssasnsssssssssssnssssssssses 231
5.3 FIT€ COMLIOL ..ueueeiercecrininsnncuscssttnanesssesessssnessssasensessanssnsmasssssssssssssssssssassassassasssssssens 232
5.4 SIMUIAtION SYSLEMScovueiuireencirninnesenssnsesosssssssssessssssssssressrssnsassassassessssssasnssssssasssssssense 232
5.5 C3I Systems 232
5.6 Operating Systems 232
5.7 Navigation Systems 233
5.8 Artificial Intelligence 233
5.9 RODOtICS /Process CONLIOLcuvuueurireeerersecnrecnecssssssesesssssesrssessssossossssssasssces 233
6. Guidelinesccccorreeervrrecreccrscsnsserrannns 234
6.1 To Select a Runtime Environment 234
6.1.1 DOCUMENLALIONcoruiueirercrernnrcnsenssensssssessnssssnsesssassasssnessssssssssesssssssasssessossssens 234

6.1.2 Degree of Configurability 234

6.1.3 ChaPLEr 13 ...oucoeecierectcensirnensnssesssssesssssassssssessesssnssasassssssssessssssssssssessessessassssases 235

6.1.4 Appendix F 235

6.1.5 Target Dependent Information 236

6.1.6 Target Initialization 236

6.1.7 Target I/O 236

-iii-

Table of Contents

6.1.8 TArZet TIMETcooueerreirrrnrnrnaessscnsasasscsnsersssssssssassesssssssnsssassssssssssssensasseses 237

6.1.9 Data Representationcoscerrsnceosenn. cersesensssssnrnssasensnesersnans 237

6.1.10 Implementation of Tasking Ceruereres et R s s R ae R ne s e e 238

6.1.11 Interrupt/Handler/Interrupt Vectors cersesasensasersaresanassesases 239

6.1.12 Storage Managementcccvccrninrvsiscusessmsessesencssisnsessasesssssssssssesesscnsins 239

6.1.13 Subroutine Call and Parameter Passing Conventionsccececveececunne 240

6.1.14 Saving Machine State During a Context Switchooveerivcsrnnrercicnee, 240

6.1.15 Exception Handlingcccoueeueeee. ettt e b Rt s b as b 240

6.1.16 Unhandled EXCEPUIONSccoccvveireviniinccninenitsiiniscsnanessssasescssasesssssssssescases 241

0.1.17 GENETICS .o.cureceiereveccraennennsrsscsscssssnsesssssssssssssassssosessssssssasensasssssasssssssssassassonss 241

6.1.18 I/O INLETTACEScceererrrrenrcrcrerernersssssssessssnsssessnssssssssesssssassssssssnenssssssstessesssess 242

6.1.19 Compiler Capacity and Tool Availabilitycccccoenrrsnirirecnrcenniccnnnnnnns 242

6.2 To Configure a Runtime EnvifONMENtcccceevsrsecceirnscrsrnesessessesssssnnssssassssnsesssess 243

6.2.1 BOOLSIIAPPINE ...cocrrecncnrinirrnnrnensssssssssessisisssssssasisensessassssosssssssssssssssssssessasassasssssss 243

6.2.2 Interrupt Vector .. rerasesseebs bR bR SRR AR RS bR e s R R0 244

6.2.3 User-Configurable Module Dependenciesccecorserirscsceasesennnseenns 244

6.2.4 TImer INEITUPLuecriirecrirecencsininnsisnsassssisssesntsessnsssesssessssnasssessessasasssinssss 244

6.2.5 Linker Options reressssb s bene 244

6.3 To Use a Runtime Environment ... 245

7. Effects of Runtime Issues on the Development of Reusable Softwarecccccoeuureeee. 247
8. Summary reesresensersesaensataettenerentetassaeneanas e s eaanent s nsaanenestessunssasasane reseerenesessnansasninte 248
9. References rrseeseent st s renebensrsaessas e sasesaeres 249
10, APPENAIX Aoueeeeeitireceerirenseeresessssssssessssstsassessssstossassensassssssnsssssssesatessasstsssasssnssssassassossss 252

-iv-

1. Ada Runtime Environment (RTE)ceeu....

2. Runtime Environment Components

3. The Application Domain

List of Figures

List of Tables

1. Bare Machine Targeted Compilers (listed by target)
2. Bare Machine Targeted Compilers (listed by vendor)

--

Guideline to Select, Configure, and Use an Ada Runtime Environment

1. Introduction
1.1 Background

An extensive effort is underway by the DoD to transition Ada technology into the real-time
embedded application domain. Much work has been done to determine why the transition
to the Ada programming language is not, in actuality, as smooth as originally anticipated. A
yrimary reason for the difficulty, cited in LabTek’s 1987 report, titled "Software Engineering
ssues on Ada Technology Insertion for Real-time Embedded Systems", is the incorporation of
a substantial runtime environment into the compilation system.

An Ada compilation system, in addition to generating the code for the semantics of the Ada
language, also supplies the code that was previously provided by a separate executive or
operating system. It provides an extensive runtime which other traditional compilers did
not. Therefore, application developers, who previously built their own executives, have to
sacrifice some otP the ability to configure the executive to suit the application when
transitioning to Ada. This report will detail the extent of configurability available in Ada
runtime environments today.

1.2 Puipose and Intent

The runtime environment of the Ada compilation system must always comply with the rules
of the Ada language as defined by the Ada standard, ANSI-MIL-STD-1815A-1983. [5] Yet
the Ada standard provides significant flexibility in how the runtime environments support
the language definition. The runtime environment is thus allowed to exhibit different
gerformance characteristics (that may reflect the needs of the application) for the same
eatures or combination of features. In fact, Ada provides the pragma construct as one
method to help the Ada compilation system determine the performance characteristics that
the runtime environment should provide for an application. Thus, the runtime environment
of an Ada compilation system may be able to accommodate an arbitrary number of
interpretations of an application in Ada that comply with the Ada language standard.
These interpretations can be guided by the pragma construct or by other mechanisms
provided by the Ada compilation system.

It is the purpose and intent of this rerort to produce a guideline to select, configure and use
an Ada runtime environment. It will detail the options available to application developers
who must contend with Ada runtime environments. A view of the current state of the
technology for bare machines will be presented.

1.3 Definitions

Following are the definitions for terms found throughout this report.

ARTEWG: The Ada RunTime Environment Working Group, is a grou? sponsored by the
Association for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda),
whose purpose is to address the problems encountered in Ada runtime environments.

AVO: The Ada Validation Orianization provides administrative and technical support to

ensure that Ada compilers faithfully implement the Ada programming language standard
(ANSI/MIL-STD-1815A-1983). [4]

Guideline to Select, Configure, and Use an Ada Runtime Environment

Base Compiler: An Ada compiler for which a current validation certificate exists. [4]

Base Configuration: The specific configuration on which the base compiler is tested by an
Ada Validation Facility (AVF) as part of the validation process. [4]

Ada Compiler. A system (in a loadable or executable code form) which translates Ada
source programs into object code that, when loaded with the target run-time system,
executes on a tar’ﬁt:t computer in a manner that is in compliance with the Ada programming
language. [4] Throughout this report the phrase compilation system will be used

synonymously.

Configure an RTE: To configure an RTE is the ability to select various software
components when building the application software. Components may be selected from the
following categories: dynamic memory management, processor management, interrupt
management, time management, exception management, rendezvous management, task
activation, task termination, I/O management, and miscellaneous support functions.
Configuring an RTE is different than tailoring an RTE (see tailor an RTE).

Derived Compiler: One of the following:
1. A base compiler on an equivalent configuration.
2. A maintained compiler on a base configuration.

3. A maintained compiler on an equivalent configuration, where any of these
pairs originates from a base compiler and base contiguration pair. [4]

Equivalen. Configuration: Any configuration of the same computer architecture(s) and
operating system for which compliance is achievable using the same ACVC (Ada Compiler

alidation Capability) version used in the validation of the base compiler on the base
configuration. [4]

Host Architecture: The computer architecture on which the compiler resides.

Maintained Compiler: A base compiler which has been changed in any way generally
accepted by the software profession to constitute "maintenance” - usually meaning minor
change. Complete replacement or addition of some major component of a base compiler is
not considered "maintenance”. [4]

PIWG: The Performance Issues Working Group, is a group sponsored by the Association
for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda), whose
purpose is to write benchmark programs which can be executed on different Ada
compilation systems and provide performance information.

Runtime Environment (RTE): Consists of three functional areas: abstract data structures,
code sequences, and predefined subroutines. It includes all of the runtime sug)port routines,
the conventions between the runtime routines and the compiler, and the underlying virtual
machine of the target computer. "Virtual" is used in the sense that it may be a machine with
layered software (a host operating system). An RTE does not include the application itself,
but includes everything the application can interact with. Each layer has a protocol
between it and the layer underneath it for interfacing. In the event that there 1sn’t any

2-

—————————————————————————————

Guideline to Select, Configure, and Use an Ada Runtime Environment

operating system layer (the bare-machine target), the runtime includes those low-level
functions found in an operating system. See Figure 1.

Tailor an RTE: To tailor an RTE is the actual modification of the source code to achieve
the requirements of the application.

(Taliet) Runtime System or Runtime System (RTS): The set of subprograms, which may be
invoked by linking, loading, and executing object code generated by an Ada compiler. If
these subprograms use or depend upon the services of an operating system, then the target
runtime system includes those portions of that operating system. [4] These predefined
subroutines are chosen from the gwn‘zm e Library for that Ada compilation system.

Target Architecture: The computer architecture used for execution of object code generated
by an Ada compiler. [4]

VAXELN is a real-time operating system for DEC VAX line of computers.

APPLICATION

Ada RUNTIME

Ado RTE

fEPERATING SYSTEM

HARDWARE \j

Figure 1. Ada Runtime Environment (RTE)

1.4 Organization of Document

Section one of this report contains the introductory information as well as the definitions of
terms found in the report.

Section two of this r:Fort details the approach used to gather the information and the
criteria used for its evaluation.

Section three of this report details the components of a runtime environment. The reader is
referred to the document "4 Framework for Describing Ada Runtime Environments",

-3-

Guideline to Select, Configure, and Use an Ada Runtime Environment

proposed by the ARTEWG, October 15, 1987. [2] This document details the evolution of
runtime environments, and provides a taxonomy of the components of a runtime
environment.

Section four of this report provides a complete list of the Ada compilation systems that were
available for bare machine targets at the time of this writing. For each implementation it
contains: 1) the degree of configurability of the runtime, 2% storage requirements of the
runtime system, and 3) efficiency information.

Section five of this report categorizes the application domain into distinct areas. For
example, a C3I application requires different runtime features than a signal processing
application. The purpose of section five is to subdivide the application domain and detail
the runtime features needed for each subdivision.

Section six of this report provides detailed guidance for selecting, configuring and using Ada
runtime environments.

Section seven details the effects that runtime issues will have on the development of
reusable software for Mission Critical Computer Resources (MCCR) applications.

Section eight contains a summary of lessons learned.
Section nine contains the reference materials used in the creation of this report.

Appendix A of this report contains two versions of the "Survey of Runtime Environment
Components”. These surveys were used to obtain information about the bare machine
target compilation systems from the compiler vendors. Throughout the period of
performance of this contract the survey was fine-tuned, thus producing a second version.

1.5 How to Best Utilize this Document

This guideline can be utilized as a reference guide or as a process for selecting an Ada
runtime environment.

For quick reference guide usage, turn to Table I, titled "Bare Machine Targeted Compilers".
This table details what compilers are available for the target of interest. Refer to the pages
listed in the right column for details on those implementations. A table of compiler vendor
names and addresses (with phone numbers) is also provided in section 4.2. Please consuit
with the compiler vendors to answer any additional question you may have regarding a
specific implementation.

To use this guideline as a process for selecting an Ada runtime environment, the following
is a suggested method:

1.) Determine your system requirements. Review section five of this report, titled
"Application Characteristics” for a general description of the requirements that can be
imposed upon the application software.

2.) Review section three of this report, titled "Ada Runtime Features". For the most

part, runtime environments can be broken down into these components and it
provides a basis for further discussion.

4.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.) Review section six, titled "Guideline to Select, Configure, and Use a Runtime
Environment”. This section contains the questions to ask before selecting a specific
implementation. The list should be fine-tuned for the particular application.

4.) Review section four for details on specific compiler implementations.

5.) Contact the compiler vendor (see section 4.2 for phone numbers) to resolve any
additional questions you may have regarding a specific implementation. If
appropriate, purchase the documentation only for the compiler of interest and review
it before making a commitment to use a particular runtime implementation.

Guideline to Select, Configure, and Use an Ada Runtime Environment

2. Approach
The approach used to obtain the information in this report was:

1. The current literature, especially the ARTEWG documents, was reviewed for material
relevant to this task. [2], [3]

[Zisiklcz:gllnprehensive list of the validated bare machine target compilers was produced. [6],

3. A Survey of Runtime Environment Components was prepared to obtain pertinent runtime
information for the compilers of interest (determined in step two above). A copy of this
survey can be found in Appendix A. The survey was updated on an iterative basis. As
vendors/users responded, it was fine-tuned and used from that point onward. The final
version (V2.0) can also be found in Appendix A.

4. The compiler vendors were contacted and asked to respond to the survey produced in
step 3 above.

The survey was concerned with obtaining the following information: a.) degree of
configurabulity, b.) the storage requirements (overhead) associated with using a particular
runtime feature, and c.) performance information.

Since most compiler vendors had the PIWG benchmarks available for their products, they
were asked to supply the results, along with the speed of the processor and wait-state of the
memory. dThe intent was to provide performance information that could be compared and
contrasted.

5. The AVO was contacted in order to obtain copies of the validation report summaries for
each bare machine target. Of particular interest was the Implementation Del?endent
Characteristics (Appendix F of the Ada Reference Manual) and the Language Features
Supported section. This turned out not to be as useful as originally expected, for two
reasons: 1.) It was not easy to obtain copies of the validation reports. It had to be ordered
through NTIS (National Technical Information Services), which was backlogged, and did
not (at the time) have copies of the recently validated compilers ready for distribution.
Typically there was a one year lag between the time a compiler was validated, and the time
the validation report was available through NTIS. 2.) The validation reports do not contain
configurability information.

6. Compiler documentation, for a few selected compilers (Tartan Laboratories, Systems
Designers Software, DDC-I, and Verdix), was reviewed for usefulness and completeness.
Special attention was paid to the sections describing runtime configurability. Some vendors
were not selected because a.) they would not sell the documentation separately without
licensing the compiler, or b.) the cost for documentation exceeded our guidelines for
purchase of it.

7. The Info-Ada bulletin was utilized to obtain a database of users who could provide the
necessary information when gaps existed in vendor supplied information.

8. A mailing to a large group of people (approximately 3603 concerned with Ada runtimes
was performed. The purpose was to see if anyone had specific information regarding a bare

-6-

Guideline to Select, Configure, and Use an Ada Runtime Environment

machine implementation and could provide input into this report. Those who respond
favorably were contacted either by electronic mail or phone and sent a survey.

9. The ARTEWG meetings and the SIGAda meetin_lgs, which fell during the period of
performance of this contract, were attended by LabTek personnel. Informal interviews
were held, contacts were made and surveys were distributed.

10. The input material obtained from steps 1-9 above was analyzed, and this report was
produced.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3. Ada Runtime Features

This section contains a taxonomy of Ada runtime environment components (see Figure 2.)
with a description of each. Again, the reader is referred to the ARTEWG document, 4
Framework for Describing Ada Runtime Environments. The taxonomy is provided here to
clarify the components referenced in the size breakdown of each runtime in section 4.

Ada Runtime
Components
Dynamic Target
Memory Housekeeping
Management Functions
Procéssor Commonly
M 1 Called Code
anagemen Sequences
Interrupt I/0
Management Management
Time Task
Management Termination
Exception Rendezvous Task
Management Management Activation

Figure 2, Runtime Environment Components
3.1 Dynamic Memory Management
Dynamic Memory Management is responsible for allocation and deallocation of storage at
runtime. It also detects when a request for storage cannot be fulfilled, and for raising the
exception STORAGE_ERROR as appropriate.
3.2 Processor Management
Processor Management implements the assignment of the CPU (or CPUs) to tasks that are

"logically executing”. The processor management function is invoked by other components
of the runtime environment, in order to block and unblock tasks. It keeps a list of those

8-

Guideline to Select, Configure, and Use an Ada Runtime Environment

tasks which are "logically executing” and uses this list, in conjunction with the priorities of
tasks, to select which task (or tasks) should physically execute. This component is often
called the "scheduler”.

3.3 Interrupt Management

Interrupt Management is responsible for initialization of the interrupt mechanism of the
underlying computing resource, and it is also responsible for resetting that mechanism after
an interrupt has occurred, if the architecture of the underlying computing resource requires
such resetting.

3.4 Time Management

Time Management consists of all those portions of the runtime environment that will
su;:Eort the predefined package CALENDAR and the implementation of delay statements.
If the underlying computing resource offers enough functionality, the support of package
CALENDAR is trivial.

3.5 Exception Management

Exception Management implements Ada semantics for excegtions: that is, it determines
whether there is a matching handler for the exception at hand, and if there is one, it

transfers control to the handler. If there is no matching handler, it invokes the Task
Termination function to terminate the task at hand or the main program.

3.6 Rendezvous Management

Rendezvous Management implements the semantics of the Ada rendezvous model. In
order to do so, it utilizes variables that are internal to the runtime environments. These
variables reflect, among other things, which tasks are blocked because they are waiting to
rendezvous with other tasks, and what the exact circumstances of these wait states are. The
rendezvous management function cooperates with the interrupt management function in
the implementation of interrupt rendezvous, if the interrupt rendezvous is supported by the
runtime environment.

3.7 Task Activation

At some ‘foint after the task object has been created, the execution of the new task has to
be started. This is effected by the task activation function. This function is invoked by the
creator of a new task in order to start the new task’s activation (which is defined as the
execution of the declarative part of the task’s body). It may also be invoked by the new task
in order to signal the completion of that task’s activation.

3.8 Task Termination

Tfask Esennination implements the set of rules for the completion, term:nation, and abortion
of tasks.

Guideline to Select, Configure, and Use an Ada Runtime Environment

3.9 I/0 Management

I/O Management consists of all those portions of the runtime environment that are
provided for the mgg)ort of input and output. This includes in particular all those functions
that support predefined packages from Chapte: 14 of the Ada Reference Manual.

3.10 Commonly Called Code Sequences

Commonly Called Code Sequences is a "catchall” category. It includes runtime routines in
the classical sense: commonly called sequences of code. Typical examples are operation
for multi-word arithmetic, block moves and string operations. Ada attribute calculations
also fall into this category.

3.11 Target Housekeeping Functions

Target Housekeeping Functions are associated with the start up and termination of the
execution environment of an Ada program. Such actions include determination of the
particular hardware and software execution environment, setting of variables identifying
same, Processor and interrupt initializations, and so on. Similarly, if a program terminates,
control is typically returned to some surrounding software whose state must be reset upon
program exit.

-10-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4. Bare Machine Targets

There are currently seventy-one validated Ada compilers which generate code for the bare
machine target. These compilers are produced by eighteen vendors.

The information in this chapter will be provided in two formats:

1.) by Target Processor Type (Table I). This section, indexed by processor type,
contains a page reference to Table II, where the detailed information for that
compilation system can be found.

2) bl); Compiler Vendor (Table II). This section, indexed by compiler vendor, details
the host/target combination, dc;%ree of configurability, PIWG benchmark results,
storage requirements in graphical form, Package SYSTEM, Package STANDARD,
and the vendor responses to pertinent questions that were considered critical to
real-time programming. The information contained in Table II is explained more
fully beginning on page 27.

In addition to the two tables described aboved, chapter 4 contains a brief description of the
PIWG benchmarks (4.1), and a list of vendor contacts (4.2).

-11-

Guideline to Select, Configure, and Use an Ada Runtime Environment

This page intentionally left blank.

-12-

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.1 PIWG Benchmarks

Benchmarks are used as part of the compiler selection process. Therefore, the Performance
Issues Working Gr?&) &IWG) benchmarks are supplied in Table II. The following is a
description of the PIWG benchmarks taken from the PIWG test suite itself.

TEST DESCRIF 7TON

A000091 DHRYSTONE Benchmark. Contains Ada statements in a
distribution considered representative: 53% assignments, 32%
control statements, 15% procedures, function calls. 100 statements
are dK?anﬁcally executed. The program is balanced with respect to
the three aspects: statement type, operand type (for simple data
types), and operand access (operand global, local, parameter, or
constant). The combination of these three aspects is balanced only
approximately. All variables have a value assigned to them before
they are used as a source operand.

A000093 WHETSTONE Benchmark. Ada version of the Whetstone
’ Benchmark Program. Reference: "Computer Journal®, February
1976, pages 43-49 for description of benchmark and ALGOL60

version. Note: Procedure POUT is omitted.

C000001 Task create and terminate measurement, with one task, no entries,
when task is in a procedure, using a task type in a package, no select
statement, no loop.

C000002 Task create and terminate time measurement, with one task, no
entries when task is in a procedure, task defined and used in
procedure, no select statement, no loop.

C000003 Task create and terminate measurement. Task is in declare block
of main procedure, one task, no entries, task is in the loop.

D000001 Dynamic array allocation, use and deallocation time measurement.
Dynamic array elaboration, 1000 integers in a procedure, get space
and free it in the procedure on each call. '

D000002 amic array elaboration and initialization time measurement,
allocation, imtialization, use and deallocation, 1000 integers
initialized by others greater than 0. equal to one.

D000003 Dynamic record allocation, and deallocation time measurement,
elaborating, allocating and deallocating record containing dynamic
array of 1000 integers.

D000004 Dynamic record allocation, and deallocation time measurement,

elaborating, initializing by (Dynamic_Size,(others = > 1)) record
containing a dynamic array of 1000 integers.

Guideline to Seleét, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)

TEST DESCRIPTION

E000001 Time to raise and handle an exception. The exception is defined
locally and handled locally.

E000002 Exception raise and handle timing measurement when exception is
in a procedure in a package.

E000003 Exception raise and handle timing measurement, when exception is
raised nested three deep in procedure calls.

E000004 Exception raise and handle timing measurement, when exception is
nested four deep in procedures.

E000005 Exception raise and handle timing measurement when exception is
in a rendezvous. both the task and the caller must handle the
exception.

F000001 Time to set a boolean flag using a logical equation. A local and a
global integer are compared. compare this test with FO00002.

F000002 Time to set a boolean flag using an "if* test. A local and global
integer are compared. Compare this test with FO00001.

G00000S TEXT_I0.Get an INTEGER from a local string, timing

measurement. Use TEXT_IO to convert 1..100 to a string, then use
TEXT_IO.GET to get the number back.

G000006 TEXT_IO.Get getting a floating point fraction from a local string.
Timing measurement on .001 to .01 range of numbers. Compare,
approximately, to G0O0000S for INTEGER vs. FLOAT.

H000001 Time to perform standard BOOLEAN operations on arrays of
BOO . For this test the arrays are PACKED with the pragma
PACK The operations are performed on the entire array.

H000002 Time to perform standard BOOLEAN operations on arrays of

BOOLEAN. The arrays are not PACKED with pragma PACK. The
operations are performed on the entire array.

H000003 Time to perform standard BOOLEAN operations on arrays of
BOOLEAN. The arrays are PACKED with the pragma PACK. The
operations are performed on components in a loop.

H000004 Time to perform standard BOOLEAN operations on arrays of

BOO . The arrays are not PACKED with the pragma PACK.
The operations are performed on components in a loop.

-14-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)
TEST DESCRIPTION
HO000005 Time to move one INTEGER object to another INTEGER object

using UNCHECKED_CONVERSION. This may be zero with
good optimization.

H000006 Time to move 10 floating Lg;oint array objects to a 10 component
floating point record using UNCHECKED_CONVERSION.
H000007 The time to store and extract bit fields that are defined b

representation clauses using both BOOLEAN and INTEGE
record components. Consists of twelve accesses, five stores, one
record copy.

1000001 Simple "for" loop time. For I in 1..100 loop. Time is reported for
once through loop.

L000062 Simple "while" loop time. While I is less than or equal to 100 loop.
Time is reported for once through the loop.

L000003 Simple "exit" loop time. Loop I:=I + 1; exit when I greater than
100; end loop; Time is reported for once through the loop.

L000004 Measure the compilers’ choice to UNWRAP a small loop of five

iterations when given the pragma OPTIMIZE(Time). An execution
time less than .05 microseconds indicates the unwrap occurred.

L000005 Measure the compilers’ choice to UNWRAP a small loop of five
iterations when given the pragma OPTIMIZE(Space). An
executi(‘)in speed less than .05 microseconds indicates the unwrap
occurred.

P000001 Procedure call and return time (may be zero in automatic inlining).
Procedure is local with no parameters.

P000002 Procedure call and return time. Procedure is local with no
parameters, when procedure is not inlineable.

P0O00003 Procedure call and return time measurement. Procedure is in a
separately compiled package. Compare to P000002.

P000004 Procedure call and return time measurement. Procedure is in a
Wely compiled package. Pragma INLINE used. Compare to
1.
P00000S Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in INTEGER.

-15-

Guideline to Select, Configure, and Use an Ada Runtime Environment

PIWG BENCHMARKS (Continued)
TEST DESCRIPTION

P000006 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, out INTEGER.

P000007 Procedure call and return time measurement. Procedure is in a
separately compiled package. One parameter, in out INTEGER.

P000010 Procedure call and return time measurement. Ten parameters, in
INTEGER. Compare to P0O0000S.

P000011 Procedure call and return time measurement. Twenty parameters,
in INTEGER. Compare to PO0000S, P000010.

P000012 Procedure call and return time measurement. Ten parameters, in
MY_RECORD, a three component record. Compare with P000010
(discrete vs. composite parameters).

P000013 Procedure call and return time measurement. Twenty composite ’in’
parameters, the composite type is a three component record.

T000001 Minimum rendezvous, entry call and return time measurement. One
task, 1 entry, task inside procedure, no select.

T000002 Task entry call and return time measurement. One task active, one
entry in task, task in a package, no select statement.

T000003 Task entry call and return time measured. Two tasks active, one
entry per task, tasks are in a package. No select statement used.

T000004 Task entry call and return time measured. One task active, two
entries, tasks in a package, using select statement.

T000005 Task entry call and return time measured. Ten tasks active, one
entry per task, tasks in a package, no select statement.

T000006 Task entry call and return time measurement. One task with ten
entries, task in a package, one select statement, compare to
T00000S.

T000007 Minimum rendezvous, entry call and return time measurement,

using one task, one entry, and no select statement.

T000008 Measures the average time to pass an integer from a producer task
through a buffer task to a consumer task.

Guideline to Select, Configure, and Use an Ada Runtime Environment

4.2 Vendor Address Listing

Advanced Computer Techniques Corp.
(InterACT)

16 East 32nd Street

New York New York 10016

(212) 696 - 3600

AlTech Software Engineering Ltd.
1250 Oakmead Parkway

Suite 210

Sunnyvale California 94086

(408) 720 - 9400

Alsys, Inc

1432 Main Street

Waltham, Massachusetis 02154
(617) 890 - 0030

CAP Industry Ltd.

Trafalgar House

Richfield Avenue

Reading Berkshire RG18QA
Englan

+44 734 508961

DDC-], Inc.

P.O. Box 32220

11024 North 28th Drive
Suite 200

Phoenix, Arizona 85064
(602) 863 - 6910

Digital Equipment Corporation
40 Old BE&ton Road P

Stow, Massachusetts 01775
(617) 496 - 8740

Gould, Inc.

Computer Systems Division

6901 West Sunrise Boulevard

P.O. Box 9148

Fort Lauderdale, Florida 22210 - 9148
(305) 797 - 5509

Harris Corporation

2101 West Cyress Creek Road
Fort Lauderdale, Florida 33309
(305) 974 - 1700

Intermetrics, Inc.

733 Concord Avenue
Cambridge, Massachusetts 02138
(617) 661 - 1840

Rational

3320 Scott Boulevard

SantaClara, California 95054-3197
(408) 496-3600

Rockwell International

400 Collins Road North East
Cedar Rapids, Iowa 52498
(319) 395 - 1729

SofTech Inc.

460 Totten Pond Road

Waltham, Massachusetts 02154 - 1960
(617) 890 - 6900

System Designers Software Inc.
101 Main Street

Cambridge, Massachusetts 02142
(617) 499 - 2000

Tartan Laboratories Inc.

461 ll\)del;vho%d Averlme 15213
Pittsburgh, Pennsylvania

(412) 621 - 2210

TeleSoft, Inc

5959 Cornerstone Court West

San Diego, California 92121 - 9891
(619) 457 - 2700

TLD

21235 Hawthorne Boulevard
Suite 204

Torrance, California 90503
(213) 316 - 1516

Verdix Corporation
Sullyfield Business Park
14130 - A Sullyfield Circle
Chantilly, VA 22021

(703) 378 - 7600

-17-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table 1. Bare Machine Targeted Compilers
(Listed By Target Processor)

The following table is a list of bare machine targeted compilers which are listed in order by
target processor (1750, 80x86, 680x0, 32032, etc.i The table includes the host processor that
the compiler executes on and the vendor who produces the compiler. Listed under each
vendor are reference gages which refers the reader to the proper pages in Table II
concerning the detailed configuration, runtime size, and benchmark information for the

corresponding compiler.

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
1750A, ECSPO RAID VAX-11/785 Intermetrics, Inc.
simulator CX-04.001 (under VMS 4.2) (Ref. pages 85 - 90)
(bare machine)

1750A, ECSPO RAID MicroVAX 11 TeleSoft, Inc.
MIL-STD-1750A simulator (under VMS, (Ref pages 174 - 180)

version 4.0 executing
on the host (bare machine)

version 4.6)

1750A, Fairchild VAX-11/785 Advanced Computer
9450/1750A (under VMS 4.4) Techniques Corp.
in a HP 64000 (Ref. page 219)
workstaion
(bare machine)
1750A, Fairchild F9450 VAX-11/750 Tartan Laboratories, Inc.
(bare machine) (under VMS 4.1) (Ref. pages 162 - 173)
1750A, Fairchild 9450 MicroVAX 11 Verdix Corp.
under Tektronics (under VMS (Ref. pages 196 - 201)
emulation (bare machine) Version 4.7)
1750A, Ferranti DEC VAX-11/7xx, Systems Designers
Computer System VAX 8xx, VAX Software, Inc.
100A Station, and (Ref. pages 148 - 149)
(bare machine) MicroVAX series
* Derived * (under VAX/VMS 4.5

or MicroVMS 4.5)
1750A, Mikros VAX-11/750 Tartan Laboratories, Inc.
MKS1750/SO (bare machine) (under VMS 4.1) (Ref. pages 162 - 173)
1750A, MIL-STD-1750A Rational 1000 Rational
(bare machine) (Ref. pages 91 - 109)

-18-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
1750A MIL-STD-1750A VAX-11 VMS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A MIL-STD-1750A HP9000 - 350 TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A MIL-STD-1750A DG AOS/VS TLD Systems Ltd.
(bare machine) (Ref. pages 189 - 195)
1750A, Tektronix 8540A Harris HCX-7 series Harris Corporation
(bare machine) (under HCX/UX, V.2.2) (Ref. page 220)
1750A, Tektronix 8540A Harris H1200 Harris Corporation
(bare machine) (under VOS, 6.1) (Ref. page 220)
1750A, Unisys $1636- VAX-11/750 Tartan Laboratories, Inc.
MIL-STD-1750A (under VMS 4.1) (Ref. pages 162 - 173)
(bare machine)
8086, Intel iSBC 86/05A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
8086, Intel iSBC 86/35 DEC VAX-11/7xx, DDC-1
(bare machine) VAX 8xxx,VAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
8086, Intel iAPX 8086 VAX-11/780 and SofTech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)
8086, Titan SECS 86/20 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80186, Intel itAPX 80186 VAX-11/780 and SofTech, Inc.
(bare machine) VAX 11/785 (Ref. pages 126 - 147)

(under VAX/VMS 4.5)
80186, Intel iSBC 186/03A DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80186, Intel iSBC 186/03A DEC VAX-11/7xx, DDC-1
(bare machine) VAX 8xx,VAX Station, (Ref. pages 65 - 80)
Derived and MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)

-19-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
80286, Intel iAPX 80286 MicroVAX I1 CAP Industrsy, Ltd.
rotected mode (under MicroVMS 4.6) (Ref. pages 59 - 64)
bare machine)

80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
real mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)
80286, Intel iAPX 80286 VAX-11/780 and SofTech, Inc.
protected mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)
80286, Intel iSBC 286/14 IBM PC/AT Alsys
(bare machine) (under PC/DOS 3.2) (Ref. pages 36 - 49)
80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxx,VAX (Ref. pages 65 - 80)
Derived Station, and

MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
80286, Intel iSBC 286/12 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xxx, VAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series

(under VAX/VMS 4.6

or MicroVMS 4.6)
80286, Titan SECS 286/20 DEC MicroVAX I DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80386, Inte! 80386 on VAX 8530 (under TeleSoft/Intel
an Intel 386-100 VMS, version 4.6) Corg. /TeleLOGIC
board (bare machine) (Ref. page 223)
80386, Intel iAPX 80386 VAX-11/780 and SofTech, Inc.
compatibility mode VAX 11/785 (Ref. pages 126 - 147)
(bare machine) (under VAX/VMS 4.5)

-20-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
80386, Intel iISBC 386/21 DEC MicroVAX II DDC-I
(bare machine) (under MicroVMS 4.4) (Ref. pages 65 - 80)
80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
(bare machine) VAX 8xxx, VAX (Ref. pages 65 - 80)
Derived Station, and
MicroVAX series
(under VAX/VMS 4.6
or MicroVMS 4.6)
80386, Intel iSBC 386/21 DEC VAX-11/7xx, DDC-I
Protected mode VAX 8xx,VAX (Ref. pages 65 - 80)
(bare machine) Station, and
Derived MicroVAX series
(under VAX/VMS 4.6
) or MicroVMS 4.6)
80386, Intel iSBC 386/20P MicroVAX 11 Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.4)
(bare machine)
80386, Intel iSBC 386/20P MicroVAX I Verdix Corp.
using file-server (under MicroVMS, (Ref. pages 202 - 206)
support from the Host Version 4.7)
(bare machine)
80386, Intel iSBC 386/20 Intel system 320 Verdix Corg.
(bare machine) (under UNIX system (Ref. page 227)
version release 3.0)
80386, Intel iSBC 386/20P VAX 8800, 87000 Verdix Corp.
using file-server 8650, 8600, 8500, (Ref. pages 202 - 206)
support from the Host 8300, 8200
(bare machine) VAX 11/785, 782, 780,
* Derived * 750, 730, & MicroVAX II
(under VMS 4.4)
80386, Intel iSBC 386/20P Sequent Symme Verdix Corp.
using file-server S-2q7(under DYI*}?X, (Ref. pagergz7)
support from the Host release 3.0)
(bare machine)
80386, Force CPU-386 DEC MicroVAX II DDC-1
VMEDbus (under MicroVMS 4.4) (Ref. pages 65 - 80)
(bare machine)
21-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
680x0, MC680x0 IBM PC/AT, Compagq 386, Alsys
(bare machine) SUN-3, HP-300, VAX/VMS (Ref. pages 50 - 58)
68000, MC68000/10 DEC VAX-11/7xx, Systems Designers
implemented on VAX 8xx, VAX Software, Inc.
the MVME 117-3FP Station, and (Ref. page 222)
board (bare machine) MicroVAX series
* Derived * (under VAX/VMS 4.5

or MicroVMS 4.5)
68000, MC68000/10 DEC VAX-11/7xx, Systems Designers
implemented on VAX 8xxx, VAX Software, Inc.
the MVME 117-3FP Station (under VMS 4.6) (Ref. pages 222)
board (bare machine) and MicroVAX Series
* Derived * (under MicroVMS 4.5)
68000, MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX
101 board (ba:< machine) version 4.2, release 3.2)
68000,MC68000 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3 Workstations, (Ref. pages 224 - 226)
Motorola MVME Models: 260, 180, 160,
101 board 150, 140, 110, 75, 60,
(bare machine) 50 and 52 (with soft-
Derived ware floating point);

SOME and 52 + 152A (with

MC68881 FPC) (under Sun

UNIX version 4.2,

Releases 3.2 & 3.4)
68000, MC68000 MicroVAX II TeleSoft, Inc.
implemented on a (under VMS, (Ref. pages 224 - 226)
Motorola MVME version 4.6)
101 board (bare machine)
68000, MC68000 DEC VAX family TeleSoft, Inc.
implemented on a MicroVAX, VAX station, (Ref. pages 224 - 226)
Motorola MVME AX server, VAX 8xxx, &
101 board VAX-11 models)
(bare machine) * Derived* (under VMS 4.5 and 4.6)

22-

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68010, MC68010, DEC VAX 8600 Systems Designers
implemented on (under VMS 4.5) Software, Inc.

the MVME 117-3FP (Ref. pages 150 - 153)
board (bare machine)

68010, MC68010 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 224 - 226)
Motorola MVME (under Sun UNIX

117-4 board (bare machine) version 4.2, release 3.2)

68010, MC68010
implemented on a
Motorola MVME
1174 board

(bare machine)
Derived

68010, MC68010
implemented on a
Motorola MVME

117-4 board (bare machine)

68010, MC68010
implemented on a
Motorola MVME
117-4 board

(bare machine)

* Derived®

68010, MC68010
implemented on a
Motorola MVME
133A-20 board
with a MC6881
floating point
coprocessor

(bare machine)
derived

Sun Microsystems

Sun-3 Workstations,
Models: 260, 180, 160,

150, 140, 110, 75, 60,

50 and 52 (with soft-

ware floating point);

SOME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,

Releases 3.2 & 3.4)

MicroVAX 11
(under VMS,
version 4.6)

DEC VAX famil
(MicroVAX, VAX station,
VAX server, VAX 8xxx, &
VAX-11 models)

(under VMS 4.5 and 4.6)

Sun Microsystems

Sun-3 Workstations,
Models: 260, 180, 160,

150, 140, 110, 75, 60,

50 and 52 (with soft-

ware floating point);
SOME and 52 + 152A (with
MC68881 FPC) (under Sun
UNIX version 4.2,

Releases 3.2 & 3.4)

TeleSoft, Inc.
(Ref. pages 224 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

TeleSoft, Inc.
(Ref. pages 225 - 226)

Guideline to Select, Conﬁgure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68020, MC68020 Micro VAX 11 AlTech Software
Motorola MVME 133 board (under MicroVMS v .4.5) Engineering Ltd.

(bare machine) (Ref. pages 28 - 35)
68020, MC68020 Rational 1000 Rational

(bare machine) (Ref. pages 110 - 125)
68020, MC68020, DEC VAX 8600 Systems Designers
implemented on the MVME (under VMS 4.5) Software, Inc.

133 board with a MC68881
floating point coprocessor
(bare machine)

68020, MC68020,
implemented on the

MVME 133 board with a
MC68881 floating point
coprocessor

(bare machine)

68020, MC68020,
implemented on

the MVME 133

board with a MC68881
floating point
COProcessor

(bare machine)

68020, MC68020
implemented on a Motorola

E 133A-20 board with a
MC68881 floating point
COprocessor

68020, MC68020
implemented on a Motorola
MVME 133A-20 board with a
MC68881 floating point
coprocessor

DEC VAX-11/7xx
VAX 8xxx, VAX
station, and Micro
VAX series (under
VAX/VMS 4.5 or
MicroVMS 4.5)

DEC VAX-11/7xx
VAX 8xxx, VAX
station (under VMS
4.6), MicoVAX series
(under MicroVMS 4.5)

DEC VAX famil
MicroVAX VAX station
AX server. VAX 8xx
models) (under VMS
4.5 and 4.6)

MicroVAXII
(under VMS 4.6)

(Ref. pages 154 - 161)

Systems Designers
Software, Inc.
(Ref. pages 154 - 161)

Systems Designers
Software, Inc.
(Ref. pages 154 - 161)

TeleSoft, Inc.
(Ref. pages 181 - 188)

TeleSoft, Inc.
(Ref. pages 181 - 188)

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
68020, MC68020 Sun Microsystems TeleSoft, Inc.
implemented on a Sun-3/280 Workstation (Ref. pages 225 - 226)
Motorola MVME 133-A-20 (under Sun UNIX

board with a MC68881 version 4.2, release 3.2)

floating point coprocessor

(bare machine)

68020, Microbar GBC68020 Sun Microsystems Verdix Corp.

(bare machine)
using file-server
support from the Host

68020, Microbar
GPC-68020
(bare machine)

68020, Microbar
GPC-68020
(bare machine)

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

* Derived *

32032, National DB32000
(NS32032) (bare machine)
using file-server

support from the Host

MicroVAX II

grunder VAXELN
oolkit, Version

3.0 in Combination

with VAXELN Ada,

Version 1.2)

Sun-3/160
(under Sun UNIX
4.2, Release 3.2)

MicroVAX II
(under UNIX 4.2 BSD)

MicroVAX 11
(under MicroVMS 4.4)

MicroVAX 11
(under MicroVMS,
Version 4.4)

VAX 8800, 87000

8650, 8600, 8500,

8300, 8200

VAX 11/78S, 782, 780,
750, 730, & MicroVAX II
(under VMS 4.4)

SYS32/20
under OpusS (UNIX
YS V), release 2.0)

VAX 8800
(under VAX/VMS,
Version 4.7)

(Ref. pages 207 - 218)

Verdix Corp.
(Ref. pages 207 - 218)

Verdix Corp.
(Ref. pages 207 - 218)

Verdix Corg.
(Ref. page 228)

Verdix Corg.
(Ref. page 228)

Verdix Corg.
(Ref. page 228

Digital Equipment Corp.

(Ref. pages 81 - 82)

Guideline to Select, Configure, and Use an Ada Runtime Environment

TARGET PROCESSOR HOST PROCESSOR COMPILER VENDOR
Any of the following All members of the Digital Equipment Corp.
configurations: VAX family: (Ref. pages 81 - 82)
MicroVAX I & IT; MicroVAX I, VAXstation I,

rtVAX 1000; KA620 MicroVAX II, VAXstation II,

(rtVAX 1000 processor VAXstation 2000 (under

board); MicroVAX 3500 & MicroVMS, version 4.7);

3600; VAX-11/730 & 750 MicroVAX 3500 & 3600;

and VAX 8500, 8530, 8550,
8700, & 8800 (under
VAXELN Toolkit, version
3.0 in combination with
VAXELN Ada version 1.2)
* Derived *

CAPS/AAMP
(bare machine)

CAPS/AAMP
(bare machine)

Gould PowerNode
Model 6080
or SelConnection)
bare machine)

VAXserver 3500, 3600, &
3602; and VAXstation 3200,

3500 (under VAX/VMS version

4.7A); VAX-11/730, 750, 780,

782, 785, VAX 8200, 8250,

8300, 8350, 8530, 8550, 8600,

8650, 8700, and 8800 (under
VAX/VMS, version 4.7)

VAX-11/8650
(under VMS,
Version 4.5)

DEC VAX 8650
(under VMS,
Version 4.7)

Gould PowerNode
Model 9080
(under UTX/32
Version 2.0)

26-

Rockwell Int’l.
(Ref. page 221)

Rockwell Int’lL.
(Ref. page 221)

Gould, Inc.
(Ref. pages 83 - 84)

Guideline to Select, Configure, and Use an Ada Runtime Environment

Table I1. Bare Machine Targeted Compilers

The following table is a list of bare machine compilation systems listed in alphabetical order
by vendor. The compiler vendor, host processor, target processor (grouped by machine
family), and compiler version aie presented in a banner heading each new host/target
combination page. Following each banner is the following information:

1.) Degree of Configurability - The survey found in Appendix A was used to obtain this
information. The sources of information were: the compiler vendors, the appropriate
compiler docuruentation, and users. Item VI. under this section describes the source(s) of
information for the information reported. Some vendors provided a technical summary and
this was included as appropriate.

2.) PIWG Benchmarks - These benchmarks were included to provide some feeling for the
efficiency of the implementation. Each compiler vendor had their own subset of the PIWG
benchmarks which they supplied as input. A description of the tests can be found in section
4.1. Processor speed and wait-state of the memory is provided to properly compare the
results; Users are encouraged to contact the PIWG directly for the benchmark results of
new compiler releases.

3.) Histogram - This is a graphical display of the runtime component sizes, and most of the
runtime sizing information was supplied by the vendors. Since this information did not
conform to a standard format the data represented on the graphs is displayed in the same
format as it was received it from the vendor. To change this Information to conform to a
standard format (sec survey in Appendix A) might have resulted in misrepresentation of the
compiler/vendor.

IT SHOULD BE NOTED that it is NOT advisable to compare the different compilers with
just the aid of the graphs themselves. For an accurate overview of each compiler, ALL
documentation provided for a particular compiler must be taken in account.

The graphs DO NOT show inter-dependencies of each component with respect to the other
components. The sizes shown represent each individual component alone and do not take in
account the fact that in order to use one component (component-A), two other components
(components-B & C) might also have to be loaded to make component-A functional. This
obviously adds to the size needed to use the component.

The %raphs display maximums (and minimums when supplied) and does not express
granularity of the components. The actual sizes may depend upon the features of the
application code. For example, component-A’s maximum size may be 10,000 bytes, but
depending upon the language construct used, only part of the component may be loaded.

The graphics package that was used to draw the graphs scaled the information to fit within a
fixed size window. Therefore, depending on the amount of information to be displayed
within this fixed size window, some graphs appear smaller than others. This has nothing to
do with the vendors or their products. It’s simply a function of the graphics package used.

4.) Package SYSTEM and Package STANDARD specification, when provided the vendor.

27-

Guideline to Select, Configure, and Use an Ada Runtime Environment

5.) Response to Critical Questions. As the surveys (see Appendix A) were returned, they
were fine-tuned. A later survey (V2.0, also found in Appendix A), asks the vendors/users to
respond to additional questions that are important to know if one is developing real-time
software. These were limited to 10 questions because a limit had to be placed on the length
of lth(;: gurvey to realistically expect people to answer it. The responses received are
included.

Note that while most compiler vendors were willing to provide at least some of the
requested data, not all responded to the survey. When this was the case, it was so stated.

Finally, a vendor’s validation certificate for a particular compilation system remains in
effect for one year. The period of performance for this contract spanned nine months and
during that time some compiler versions became obsolete. The information presented is as
up to date and accurate as possible for the compiler version presented. Because the
implementations are changing so rapidly, it is suggested that a potential customer contact
the vendor for newer release information. However, this report provides a substantial
anlmunt of basic information that probably would not change drastically from release to
release.

.

-27.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
AlTech Software VAX/VMS MC68020, Motorola
Engineering Ltd. (bare machine)
Con‘z‘%ler version:

AI-ADA/020 V2.1

DEGREE OF CONFIGURABILITY
I Linker Capability:
- Any part of a library unit being required loads the entire unit.
IL. Customization of the Runtime:

- By linker switches
- By modifying the source to the entire runtime (after purchasing it)

IIL. Documentation provided to help user configure runtime:
- This information was not supplied by the vendor.
IV. Services to customize the runtime:
- Provided by AITech
- Cost: Engineerin%l services are provided, subject to negotiation between the
customer and AlTech.
V. Cost of runtime source code:

- The price of the runtime source code is subject to negotiation.

V1. Source of Information: Vendor Input.

Guidelines to Select, Configure and Use an Ada Runtime Environment

AlTech Systems Ltd. PIWG results for MVME133 board, 68020 + 638881. Clock : 20MHz,

one wait state, and cache enabled.
PIWG Test Description Micro -
Name seconds
C000001 Task creation/terminate, task type declared in package. 546.9
C000002 Task creation/terminate, task type declared in procedure. 550.8
C000003 Task creation/terminate, task type declared in block. 554.7
T000001 Minimum rendezvous, entry call and return. 183.6
T000002 Task entry call and return (one task, one entry). 177.8
T000003 Task entry call and return (two tasks, one entry each). 201.2
T000004 Task entry call and return (one task, two entries). 1934
T000005 Active entry and return (ten tasks, one entry each). 187.5
T000006 Task entry call and return (one task, ten entries). 226.6
T000007 Minimum rendezvous, entry call and return. 139.6
TO000008 Parameter pass from producer task through buffer task to 464.9
Runtime System Overhead Measurements
Measurement Description Micro -
seconds
Interrupt from interrupt signal to first 81

Response Time

Interruft Response
for Null Rendezvous

Rendezvous Initiation
Overhead

Rendezvous Termination
Overhead

Clock Interrupt
Overhead

Context Switch

instruction in the rendezvous body

from interrupt signal until a user task 67
(the interrupted one or another) is resumed

from arrival of second partner to first 65
instruction in the rendezvous body

from end of rendezvous body 77
until the user task is resumed

time spent handling one clock 3.8
one clock interrupt

from last instruction in one user task to "first 44

instruction in another user task (measured on the
statement: delay 0.0;)

-29.

BYTES

Guidelines to Select, Configure and Use an Ada Runtime Environment

Aitech Software Engineering Ltd.

Host VAX / VMS
Target: MC68020

Version: AI-ADA/020 Va.l
4000

3500
3000

2600

2500

2000
) 2000

2000
1500

1400

o
S
Y

1000

500

N 500

%

—_

1/0 Mgmt AN

Time MgmiARRHhRRR
HousekeepingRYNRRX

C.CC. SequencesR\

Q
-+
=]
<
£
C
W
—
X
n
=]
—

Task ActivationRNNR

Interrupt MgmtARRRHHHHHR
Exception MgmtAKllHhHt

Processor Mgnt TN

-+
£
D
=
n
3
(8]
>
N
L]
Kol
[=
Y]
o

Dynamic Memory Mgmt A RHHHiHhhm

- Sum Of All Components = 23,700 bytes

¥ Component supplied by vendor.

Common RTS utiizes xRl

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
A1l: Currently 10 microseconds, but it can be configured to suit the application.

Q2: How long, and for what reasons are interrulgts disabled?
A2: Maximum of 100 Microseconds when the RTS is handling some global data structures,
and during context switches.

Q3: What rendezvous optiimizations are performed? For example, when can the called
task operate in the same context as the calling task?
A3: The following are rendezvous mechanisms that are highly optimized:

1.) Efficient handling of the select statement.
2. i‘a)aecial handling of synchronization rendezvous.
3.) Very low context switch overhead.

See PIWG results.

Q4: What are the restrictions for representation clauses?
A4: Representation clauses will be supported in the next version.

QS: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.

AS5: Priority driven preemptive scheduling with optional time slicing among tasks of equal
priority.

Q6: What are the restrictions on pragma INLINE?
A6: Version 2.1 does not support pragma INLINE.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are supported by pragma SHARED?
A9: Only scalar objects (integers, real numbers, etc.).

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Maximum number of tasks (No limit)
- Task time slice default

- Timer resolution

- Exception trace

- Default stack sizes

- Fast interrupt entry

- Default task priority

- Terminal I/

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the MC68020

package SYSTEM is

type ADDRESS is private;

subtype PRIORITY is INTEGER range 0 .. 23;
~-- Priority 0 is reserved for the Null Task
~-- Priority 24 is reserved for System Tasks
-- Priorities 25 .. 31 are for interrupts

type NAME is (M68020, M68000);

SYSTEM_NAME : constant NAME := M68020;
STORAGE_UNIT : constant := 16;
MEMORY_SIZE : constant := 2048 * 1024;
MIN_INT ¢ constant := -2_147_483_647 - 1;
MAX_INT ° : constant := 2_147_483_647;
MAX DIGITS : constant := 18;
MAX MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.04E-31;
TICK : constant := 0.000_001;

private

type ADDRESS is new LONG_INTEGER;

end SYSTEM;

<32-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Description of Package STANDARD for AITech MC68020 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORT_INTEGER, INTEGER, and

LONG_INTEGER.

They have the following attributes:

SHORT_INTEGER'’FIRST = -128
SHORT_INTEGER’/LAST = 127
SHORT _INTEGER’SIZE = 8
INTEGER’FIRST = =32_768
INTEGER’LAST = 32_767
INTEGER’SIZE = 16

LONG_INTEGER’FIRST
LONG_INTEGER’LAST
LONG_INTEGER’SIZE

Floating Point Types

-2_147_483_648
2_147_483_647

32

Three predefined floating point types are implemented, SHORT_FLOAT, FLOAT,
and LONG_FLOAT. They have the following attributes:

SHORT_FLOAT’DIGITS
SHORT_FLOAT’EPSILON
SHORT_FLOAT'FIRST
SHORT_FLOAT'’ LARGE
SHORT_FLOAT'LAST
SHORT_FLOAT’MACHINE_EMAX
SHORT_FLOAT’MACHINE_EMIN
SHORT_FLOAT’MACHINE_MANTISSA
SHORT_FLOAT’MACHINE_OVERFLOWS
SHORT_FLOAT’MACHINE_RADIX
SHORT_FLOAT’MACHINE_ROUNDS
SHORT_FLOAT’MANTISSA
SHORT_FLOAT’ SAFE_EMAX
SHORT_FLOAT’SAFE_LARGE
SHORT_FLOAT'’SAFE_SMALL
SHORT_FLOAT’SIZE

6
-16#0.FFFF_FF#E32

1640.FFFF_FF#E32
127
-126
23
TRUE
2
TRUE

125
42535275582707704281251401981719740416.0
0.1175494350822287507968736537222245677E-37
32

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for AITech MC68020 Bare Machine Target (Continued)

FLOAT’DIGITS = 15

FLOAT’EPSILON =

FLOAT'’FIRST = -16#0.FFFF_FFFF_FFFF_F8#E256
FLOAT'’ LARGE =

FLOAT'’LAST = 164FFFF_FFFF_FFFF_F8#E256
FLOAT’MACHINE_EMAX = 1023

FLOAT’MACHINE_EMIN = =1022
FLOAT‘MACHINE_MANTISSA = 52
FLOAT'MACHINE_OVERFLOWS = TRUE

FLOAT’MACHINE_RADIX = 2

FLOAT‘MACHINE_ROUNDS = TRUE

FLOAT’MANTISSA
FLOAT’SAFE_EMAX
FLOAT’SAFE_LARGE
FLOAT’SAFE_SMALL
FLOAT’SIZE

1021
224711641857789388674147672112637508883611472.0E262
0.2225073858507201383090232717332404064219216E-307
64

LONG_FLOAT’DIGITS 18
LONG_FLOAT’EPSILON
LONG_FLOAT'’FIRST
LONG_FLOAT'’ LARGE

LONG_FLOAT’ LAST

-16158503035655503648605529934797844443001542.0E573

16158503035655503648605529934797844443001542.0E573

LONG_FLOAT’MACHINE_EMAX = 16383
LONG_FLOAT’MACHINE_EMIN = -16382
LONG_FLOAT’MACHINE_MANTISSA = 63
LONG_FLOAT’MACHINE_OVERFLOWS = TRUE
LONG_FLOAT’MACHINE_RADIX =2
LONG_FLOAT’MACHINE_ROUNDS = TRUE

LONG_FLOAT’MANTISSA
LONG_FLOAT’ SAFE_EMAX
LONG_FLOAT’ SAFE_LARGE
LONG_FLOAT’SAFE_SMALL
LONG_FLOAT’SIZE

2047
1615850303565550364334980470618644983134.0E573
0.3094346047382578275480183369971197853892E-616
80

Fixed Point Types

Three kinds of anonymous predefined fixed point types are implemented,
named SHORT_ FIXED, FIXED, and LONG_FIXED. Note that these names are
not defined in package STANDARD, but only used here for reference.

8 bits are used for the representation of SHORT_FIXED types,
16 bits are used for the representation of FIXED types, and
32 bits are used for the representation of LONG_FIXED types.

For each of SHORT_FIXED, FIXED and LONG_FIXED there exists a virtual

predefined type for each possible value of SMALL. The posible values
of SMALL are the powers of two that are representable by a LONG_FLOAT value

34-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Pachge STANDARD for AITech MC68020 Bare Machine Target (Continued)

The lower and upper bounds of these types are:

lower bound
upper bound
lower bound
upper bound
lower bound
upper bound

of
of
of
of
of
of

A user defined
SHORT_FIXED, FIXED, or LONG_FIXED type which has the largest value
of SMALL not greater than the user-specified DELTA, and which has
the smallest range that includes the user-specified range.

SHORT_FIXED types
SHORT_FIXED types
FIXED types

FIXED types
LONG_FIXED types
LONG_FIXED types

-128 * SMALL

127 * SMALL

-32_768 * SMALL

32_767 * SMALL
-2_147_483_648 * SMALL
2_147_483_647 * SMALL

0 tuan

fixed point type is represented as that predefined

Any fixed point typeT has the following attributes:

T/MACHINE_OVERFLOWS
T/MACHINE_ROUNDS

TRUE
TRUE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION’AFT =5

DURATION'’DELTA = DURATION’SMALL
DURATION'’FIRST = =131_072.00000
DURATION’ FORE =7

DURATION'’LARGE = 1.31071999938965E05
DURATION’LAST = 131_071.00000
DURATION’MANTISSA = 31
DURATION’SAFE_LARGE = 1.31071999938965E05
DURATION'’SAFE_SMALL = DURATION’SMALL
DURATION'’SIZE = 32

DURATION’SMALL = 6.10351562500000E-05 = 2#1.0#E-14

.35-

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Alsys IBM PC/AT 80286, Intel iSBC 286/14
Compiler version 3.21 (under PC/DOS 3.2) (bare machine)

DEGREE OF CONFIGURABILITY
L. Linker Capability:

- Subprograms are loaded if used. Package data is always loaded if the package is in a
context clause.

I1. Customization of the Runtime:

- By the use of compiler switches.

- By linker switches.

- Modifying/Replacin the source to selective runtime routines provided with the
purchase ot the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

The target runtime system for the cross-compiler consists of the following sections:

Ada Runtime Executive - performs various high-level services (e.g., exception and
interrupt handling). For typical (;gerating system functions, the executive invokes the
Bare-Machine Kernel. The Ada Runtime Executive is provided by Alsys.

Bare-Machine Kernel - invokes the Hardware Interface to perform any operations
specific to the particular hardware in the system. The Bare-Machine Kernel is
provided by Alsys. :

Hardware Interface - is the interface to the specific hardware in the system. It is
unique to each specific system and must therefore be supplied by the user. The user
must provide configuration routines, configuration parameters and configuration
tables. These are written in assembly language. They are linked into the runtime
system.

Hardware Setup - contains the following routines and configuration parameters
for performing hardware housekeeping operations of the system.

Configuration Routines:

An initialization routine which is used to initialize the peripheral chips on
the board and install any specialized interrupt handlers.

A routine to return the processor to real mode.

-36-

Guidelines to Select, Configure and Use an Ada Runtime Environment
A routine to perform any necessary cleanup of the hardware or operating
environment and return control to the operating system.

A routine to return in the DX:AX register pair the 32 bit address of the
end of the memory area reserved for the heap.

Configuration Parameters:
The keyboard (or serial input channel) interrupt number.
The timer interrupt number (level).
The frequency at which the timer interrupts occur.
XON/XOFF protocol specification.

Input and Output Routines:

A routine to handle keyboard interrupts. It collects the incoming character and
clears the interrupt from the interrupting device.

v

A routine to write a character to the console output device.

A routine to handle timer interrupts. It updates the real-time clock and clears
the interrupt from the interrupting device.

Device Drivers - perform the various input/output functions. They are unique to each
specific system and must therefore be supplied by the user. The user must provide
configuration routines, configuration parameters and configuration tables. These are
written in assembly language. They are linked into the runtime system.

Configuration Tables:

A table which contains the list of names corresponding to the devices in
the system.

A table which contains a list of 16-bit values, one for each device in the
above table. Each value specifies whether the corresponding device is
the console input, console output, some other device, or a file.

é\ table containing the names of initialization routines, one for each
evice.

A table containing the names of necessary cleanup routines (such as
flushing buffers), one for each device.

A table containing the names of routines which allow the user to
maintain a file position so that direct I/O could be performed on the
device, one for each device.

Guidelines to Select, Configure and Use an Ada Runtime Environment
A table containing the names of routines which allow a sequence of
characters to be sent to the device, one for each device.
Configuration Routines:

A procedure must be specified for each routine named in the above
tables. ' ‘

Useful External Routines - These routines are provided for use in the Hardware
Interface and Device Specifications.

A routine to put a character into the input buffer so that it can be fetched by
the Ada program.

A routine to update the real-time clock.
A routine to get a character from the console-input device.
A routine to output a character to the console-output device.

A routine which will cause the program to be restarted (start of the bare-
machine kernel).

Tools:
The Intel 8086 toolset is used, namely: ASM86, LINK86, LOC86, LIB86.
Transfer Tools - A tool which allows cross loading.

80x86AdaProbe - cross debugging version of AdaProbe. It is an IBM PC
AT-hosted program viewer/debugger that works with other components of the
cross-compiler to debug code that executes on any Intel i80x86-family
processor.

It supports all three execution modes provided by the cross-compiler:

- In cross mode the code executes on a remote target with no operating
system. 80x86 AdaProbe runs on the host, communicating with the target
over a serial link or equivalent.

- In simulated mode the code executes on the host machine but without
making any calls to the operating system.

- In native mode the code runs on the host taking full advantage of DOS
and BIOS. '

L]

-38-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Technical Summary for Alsys Cross Compilation Systems for Intel 80x86 (V. 3.21)

Alsys provides a document titled "Technical Summary for Alsys Cross Compilation Systems
for Intel 80x86 (version 3.21)", dated July 11, 1988. [16] It's purpose is to aid prospective
purchasers of Alsys cross compilation systems for Intel 80x86 microprocessors in their
evaluations of the technical characteristics of the products. It addresses the more common
concerns of real-time and embedded applications developers when selecting an Ada
compilation system. Following is an index of the information contained in it.

A. Components & Applicability of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Hardware Requirements.
6. Validation Status.
B. Compilation System.
1. Capacities & Robustness.
2. Speed/Throughput.
3. Library Facilities.
4. Code Quality.
5. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.
C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4. Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certifiability.
8. Features.
D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators.
1G. Support for Deveiopment of Independent Tools.
E. Documentation.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Use of System.

Implementation Dependencies.
Configurability.

Installation Guide.

Project Development Guide.
Command Reference.

Index.

Applications Development Guide (tips, etc.).
. Runtime System Guide.

10. Bug Lists.

11. Change Bars on Succeeding Revisions.

ORNRANARWN -

The following excerpts are from the section titled "Runtime System".
1. Capacities and robustness.

a. Max active tasks. Bounded by available memory. Task representation is approximatel;
160 bytes, plus 500 bytes stack overflow buffer, plus the designated task stack size.
Programs have been executed with 500 simultaneously active tasks.

2. Performance/resource usage.
a. PIWGs and other benchmarks. Can be found following this section.

b. Size. The size of the runtime environment varies from approximately 14 K bytes to 28K
bytes, depending on features used.

3. Configurability support. The compilation system offers comprehensive configurability
support. .Conﬁguration customization of the runtime environment is effected via
configuration files and user defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.

- Designation of default task stack size.

- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).

- Facilities for integrating I/O devices.

4. Tailorability. One aspect of tailorability, aside from the configuration facilities listed
abgve, is that the system supports unused subprogram elimination for both user and RTE
code.

5. Extensions. No runtime environment extensions are currently implemented.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

-40-

Guidelines to Select, Configure and Use an Ada Runtime Environment

8. Features.,

a Interrupt support. Not supported in this release, but will be available beginning
November 1988.

b. Scheduler Characteristics.
1) Preemptive. The scheduler is fully preemptive and interrupt driven. Scheduling
actions are load-insensitive: the num%er of simultaneously active tasks does not affect
the time to perform scheduling actions.

2) Priority levels & treatment of undefined priority. -Priorities may be defined in the
range 1.. 16. An undefined priority is considered to be lower than any defined value.

3) Consideration of hardware interrupt priority levels. Interrupt entries may have up to 8
priority levels beyond type System.Priority.

4) Time slicing. Time slicing may be set via a binder command option. Granularity for
specifying the quantum is 1 millisecond.

3) Suppont for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive. They
are not affected by the number-of simultaneously active tasks.

7) Deadlock or permanent blocking detection & support for actions on same. When the
RTE detects a permanent blocking situation, it terminates the application by
transferring control to the user written termination hook.

¢. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.
DURATION’DELTA = .001 seconds
DURATION’SMALL = 2**.10 seconds
DURATION’FIRST = -2_097_152.0 seconds
DURATION’LAST = DURATION’LARGE = 2_097_151.999 seconds

3) TICK SYSTEM.TICK = 1/18 seconds, but is unused. The effective TICK is
designated by the application builder in the configuration file.

4) Clock call overhead. Not currently determined.

5) Typical time to reschedule when highest priority task times out. On the order of 80
microseconds on an 8 MHz, 0 wait state 80286.

6) Time operations overhead. Not currently measured.

41-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Configurability. As described in the conﬁg;:lrability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d. Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitrarily large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope definin, tllzqe_rzpe is exited. This implementation
has the same effect as explicitly applying pragma éO OLLED to each access type in the
application. Compiler generated temporaries are reclaimed as soon as they are no longer
needed. A task’s stack is reclaimed as soon as the task terminates.
UNCHECKED_DEALLOCATION reclaims an access object immediately.

In order to &rovide better management of stacks and global data areas, which are currently
limited to 64 K bytes each, binder options are provided to set threshold values for the
maximum size oinects to be allocated 1n each of these areas. If an object is larger than the
pertinent threshold value, it is allocated on the heap instead.

e. Exception management approach.

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers exceptions to be exceptional, and not a normal
method for transferring flow of control. The language designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table driven, interpretive approach to exception management, which
do_esdnot penalize subprogram linkage sequences for the possibility of an exception being
raised.

f- Support for multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build systems with stand-alone Ada programs on each processor which
communicate with each other.

g Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation.

The rendezvous implementation uses the "naive” _?%proach to execution of accept bodies:

on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches.

42-

Guidelines to Select, Configure and Use an Ada Runtime Environment
The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches.

The selective wait statement is made reasonably "fair" in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.
I11. Documentation provided to help user configure runtime:
- As %art of a standard product: Cross Development Guide
- As RTE technology transfer (ALSYARTE), all design documentation, a week long
course and consulting services.

IV. Services to customize the runtime;

- Not for particular applications, but Alsys occasionally does custom work for projects
of Sufficient scope.

V. Cost of runtime source code:
- Approximately $250,000, but it is dependent upon the specific situation.

V1. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor. .

43-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286. Clock : 8MHz, iSBC286/12, Multibus I, zero wait-states
(tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
A000093 Whetstone benchmarks* ’ 160**
C000001 Task creation/terminate, task type declared in package. 1747.1
C000002 Task creation/terminate, task type declared in Broce ure. 1912.5
C000003 Task creation/terminate, task type declared in block. 1734.3
D000001 Dynamic array, use and deallocation. 116.4
D000002 Dynamic array elaboration and initialization. 7200.9
D000003 Dynamic record allocation and deallocation. 150.8
D000004 Lynamic record elaboration and initialization. 7598.9
E000001 Raise and handle an exception locally. 374.2
E000002 - Raise and handle an exception in a package. 732.0
E000004 Raise and handle an exception nested 4 deep in procedures. 1289.2
F000001 Set a BOOLEAN flag using a logical equation. 3.6
F000002 Set a BOOLEAN flag using an "if" test. 4.1
G00000S TEXT_I0.Get an INTEGER from a local string. 540.8
G000006 TEXT_10.Get a FLOAT from a local string. 1850.0
L.000001 Simple "for" loop. 3.9
L.000002 Simple "while" loop. 3.9
L000003 Simple "exit" loop. 3.9
P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 4.8
P000003 Procedure call and return (compiled separately). 6.0
P000004 Procedure call and return (Pragma INLINE used). 0.0
P000005 Procedure call and return (one parameter, in INTEGER). 6.6
P000006 Procedure call and return (one parameter, out INTEGER). 7.5
P0O00007 Procedure call and return (one parameter, in out INTEGER). 1.5
P000010 Procedure call and return (ten parameters, in INTEGERE 16.4
P000011 Procedure call and return (twenty parameters, in INTEGER). 26.0
P000012 Procedure call and return (ten parameters, in record_t{e). 29.1
P000013 Procedure call and return (twenty parameters, in record_type). 52.0
T000001 Minimum rendezvous, entry call and return. 416.4
T000002 Task entry call and return (one task, one entry). 411.7
T000003 Task entry call and return (two tasks, one entry each). 417.6

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for iSBC286 (continued). Clock : 8MHz, iSBC286/12, Multibus I, zero
wait-states (tests were compiled with Checks off, Optimizations on). PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
T000004 Task entry call and return (one task, two entries). 741.4
T00000S Active entry and return (ten tasks, one entry each). 411.9
"T000006 Task entry call and return (one task, ten entries). 1905.3
T000007 Minimum rendezvous, entry call and return. 2539

* Using standard internal math routines.
b ETSTONE : units are in KWIPS not in microseconds.

Guidelines to Select, Configure and Use an Ada Runtime Enﬁro_nment

Alsys, Inc.

PC 7/ AT

Host:

Intel 80x86

Target:
Versiom 3.2

008

0011/

5 /¢ &\

-~
o
"D n
a4 o =)
M ™ -

N *TAVINY LS 260>420g
N ¥WILSAS 3603204

N008 I xBunis 0] SNoauONaISIK

% SNOAUD)3ISIW

Suidaa»asnoy

sanuanbas ‘9]

3+wBW 0/1

N N0 Juoryouwaay xsoy

002€ R

NN UOI3 DAI}OY XSO}

'3wby snoazapuay

Y w6 uoiydasx3
&

‘ awbp awil

N0 [2wBW 3dnauazyr

‘3wl JO0Ssa0Uy

Sum of ALL components = 14,650 - 79,930

% Component was supplied by vendor.

ww Component supplied by vendor, see next page for details

Guidelines to Select, Configure and Use an Ada Runtime Environment

Vendor supplied component description

The minimum RTE including data is 14,650 bytes. The maximum RTE, including
instantiations of all I/O packages and use of all possible RTE functions and I/O routines is

79,930 bytes.

A typical contribution of the RTE with usual 1/O :

Processor
Management

Interrupt
Management

Time
Management

Exception
Management

Rendezvous
Management

Task
Activation

Task
Termination

1/0 Management:
Subcomponent
Text_10
10_Exceptions
Direct_1
Sequential_1O

C.C.C. Sequences

No tasking : approximately 22,000 - 24,000 bytes.
Tasking : approximately 25,000 - 30,000 bytes.

1. No tasking - 0 bytes;
2. Tasking - 1900 bytes.

1. No tasking - 0 bytes.
2. Tasking component not used - 600 bytes.
3. Tasking used (maximum) - 700 bytes.

1. Calender not in context clause, no tasking - 0 bytes.

2. Calender in context but not called, no tasking - 200 bytes.
3. Calender in context clause (maximum) - 2,500 bytes.

4. Tasking timer component - 1,200 bytes.

Always present - 1000 bytes.

1. No tasking - 0 bytes.
2. Tasking, rendezvous not used - 100 bytes.
3. Tasking, all types used (maximum) - 3,200 bytes.

1. No tasking - 0 bytes
2. At least one task defined - 1,200 bytes.

1. Abort not used - 0 bytes.
2. Abort used - 600 bytes.
3. Dependency maintenance - 2,000 - 2,100 bytes.

Not in context In context, not used, Maximum (all
instantiated routines called)

0 bytes 2400 bytes 25,800 bytes

0 bytes 30 bytes 30 bytes

0 bytes 200 bytes 2,800 bytes

0 bytes 200 bytes 1,900 bytes

Arithmetic and block moves 1,200 - 1,500 bytes.

Miscellaneous category is additional to the above components, but implements some of the
above functionality (including I/O, memory management, exception handling, tasking, etc.)

47-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

As surveys were returned, the original survey was fine-tuned based on comments received
(see Survey, V. 2, in Appendix A). It was decided to comprise a list of ten important issues
the user should obtain the answers to before selecting a compilation system for a particular
application. Below are questions asked and answers receivedp for this implementation.

Q1: What is the resolution of the clock used for delay statements?
Al: User configured.

Q2: How long, and for what reasons are interrupts disabled? '
A2: Interrupts are only disabled in user written interrupt service routines.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Based upon past implementations using Habermann-Nassi and Order of Arrival
schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized tq avoid context switching.

Q4: What are the restrictions for representation clauses?
A4: All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)
- pragma PACK (V4.1) -
- chan%e of representation for derived record types
- T’SIZE for types declared in a generic unit
* - TSMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31
- enumeration clauses are not allowed if there is a range constraint on the parent
subtype
- address representation clauses (the ADDRESS attribute is fully supported).
- the STORAGE_SIZE representation clause for reserving memory for task
activation.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Preemptive, round-robin within priority level. Time slicing, under user control.

Q6: What are the restrictions on pragma INLINE?
A6: No direct or indirect recursion.

Q7: Is code "ROM"able?
AT: Yes, code, constants and initial values for global variables.

Q8: Are machine code inserts supported?
A8: No.

-48-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q9: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items listed below are configurable for the runtime system.

- Max. No. of Tasks

- Task Time Slice Default

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Terminal I/O

- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Alsys Apollo, IBM PC/AT, MC680x0
Compiler version 3.5 Compaq 386, SUN-3, (bare machine)

HP-300, VAX/VMS

DEGREE OF CONFIGURABILITY
I. Linker Capability:

Any part of a library unit being required loads the entire unit. This changes with
Version 4.2, October 1988.

I1. Customization of the Runtime:

- By the use of compiler switches.

- By linker switches.

- Modifying/Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).

- By modifying the source to the entire runtime (after purchasing it).

Technical Summary for Alsys Cross Compilation Systems for Motorola M680x0 (V. 3.5)

Alsys provides a document titled "Technical Summary for Alsys Cross Compilation Systems
for Motorola M680x0 (version 3.5)", dated July 11, 1988. [17] It's purpose is to aid
prospective purchasers of Alsys cross compilation systems for Motorola M680x0
microprocessors in their evaluations of the technical characteristics of the products. It
addresses the more common concerns of real-time and embedded applications developers
when.se}ieg:tipg an Ada compilation system. Following is an index of the information
contained in it.

A. Components & Applicability of Product.
1. Compilation System Components.
2. Documentation Set.
3. Available Hosts.
4. Supported Targets.
5. Software and Egardware Requirements.
6. Validation Status.

B. Compilation System.

Guidelines to Select, Configure and Use an Ada Runtime Environment

1. gapagi/ﬁﬁs & Robustness.
2. Spee roughput.
3. L?brary Facilities.
4. Code Quality.
S. Error Messages.
6. Ease of Use, Convenience, Flexibility.
7. Implementation Dependent Features.
8. Target Specific Features.
9. Optimizations.
C. Runtime System.
1. Capacities and Robustness.
2. Performance/Resource Usage.
3. Configurability Support.
4, Tailorability.
5. Extensions.
6. Source Code Availability & Implementation Language.
7. Certifiability.
8. Features.
D. Development Tools.
1. Debugger Support.
2. Profiler.
3. Support for Logic Analyzers and Emulators Independent of Debugger.
4. Cross Referencer.
5. Source Formatter.
6. Language Sensitive Editor.
7. Source Configuration Control.
8. Communications Support.
9. Test Case Generators. .
10. Support for Development of Independent Tools.
E. Documentation.
Use of System.
Implementation Dependencies.
Configurability.
Installation Guide.
Project Development Guide.
Command Reference.
Index.
Applications Development Guide (tips, etc.).
. Runtime System Guide.
10. Bug Lists.
11. Change Bars on Succeeding Revisions.

OONAN S W

The following are excerpts from the section titled "Runtime System".
1. Capacities and robustness.

a. Max active tasks. For VRTX and VRTX32 (Ready Systems’ real-time executives) it is 255.
For ARTK (Alsys’ real-time executive), as bounded by available memory.

2. Performance/resource usage.

-51-

Guidelines to Select, Configure and Use an Ada Runtime Environment

a. PIWGs and other benchmarks. See following pages.

b. Size. The runtime environment size is aps)roximately 36 K Bytes in the current version.
Further reductions will be implemented in V4.1.

3. Configurability support.

The compilation system offers comprehensive conﬁfurability support. Configuration
customization of the runtime environment is effected via configuration files and user
defined hook routines. The areas under user control include:

- Size and location of the Ada heap for dynamic memory management.

- Designation of default task stack size and interrupt stack size.

- Designation of maximum number of interrupts allowed to be simultaneously active
or pending, and the maximum number of Ada interrupt entries defined over a
pr{)}gram. ese values are used to tailor internal data structures of the RTE.

- User supplied routines to initialize and handle the timer, and designation of its
period (the effective TICK of the application).

- Facilities for integrating 1/O devices.

4. Tailorability. Another aspect of tailorability, aside from the configuration facilities listed
above, is that the Ada binder selects between a tasking and non-tasking runtime

environment based upon the presence of tasking constructs in the application. V4.1 will
support unused subprogram elimination for both user and RTE code.

5. Extensions. Package USER_IO is supported under ARTK. As an alternative to the
address clause method of specifying interrupt entries, package INTERRUPT_HANDLER
is provided. This package supports designation of the persistence of interrupts, and the use
of a parameter.

6. Source code availability & implementation language. The compiler and a large part of
the RTE are implemented in Ada. Some portions of the RTE are implemented in assembly
language.

Source code for the RTE is available through a separate arrangement (AlsysARTE).

7. Certifiability. Alsys is willing to enter into special arrangements should a project require
special certification of portions of the RTE.

8. Features.
a Interrupt support.

1) Timing. Interrupt entries have roughly 150 microseconds overhead associated with
them on a 20 MHz 68020.

2) Latency. Not yet measured for ARTK, but initial estimates of the maximum are in
the range of 20 - 30 microseconds under certain infrequent conditions.

Ready Systems publish their interrupt latency figures for VRTX and VRTX32.

-52-

Guidelines to Select, Configure and Use an Ada Runtime Environment

3) Fast Interrupts. The system does not currently implement a special “fast interrupt”
pragma, but note the time for interrupt entry rendezvous in 1) above.

4) Types supported (e.g. persistence). The system supports both persistent
(unconditional) and nonpersistent (conditional) interrupts. Interrupt entries are
executed as special software priority levels corresponding to the hardware priority
level of the particular interrupt.

5) Parameter support. Parameters are not supported when using the address clause
mechanism for interrupt entries. A single parameter of mode in, of discrete or access
typc:i1 is supported when using the alternative package INTERRUPT_HANDLER
mechanism.

b. Scheduler Characteristics.

1) Preemptive. The scheduler is fully preemptive and interr_lgtp(t driven. Scheduling
actions are load-insensitive under VRTX32 and ARTK: the number of
simultaneously active tasks does not affect the time to perform scheduling actions.

2) Priority levels & treatment of undefined prionity..

For ARTK, 24 user definable priority levels are available. The undefined priority
value is considered to be less than any defined priority. Seven software priority levels
are reserved for interrupt servicing. (See next section).

For VRTX and VTX32, users may define priorities in the ran%e 1..248 for Ada tasks.
Priorities 249 .. 255 are reserved for interrupt entries as described in the next section.
Undefined priority is lower than any defined priority.

3) Consideration of hardware interrupt priority levels.

Under ARTK seven priority levels (25-31) are reserved for interrupt entry processing.
Each level corresponds to a hardware interrupt level. Note that execution of accept
bodies for interrupt entries does not take place at the hardware interrupt level,
because interrupts are not disabled during execution of an accept body. A task
executing an interrupt entry may be preempted by another task executing an interrupt
entry for an interrupt at a higher hardware interrupt level.

An analogous scheme is used for VRTX and VRTX32, using priority values 249 -255.
4) Time slicing. Time slicing will be implemented for ARTK in V4.1

Time slicing is currently implemented for VRTX and VRTX32.

J3) Support for rate monotonic scheduling. Rate monotonic scheduling is not
implemented in the current version.

6) Load sensitivity. All scheduling and inter-task operations are load insensitive for
VRk'g'X32 and ARTK. They are not affected by the number of simultaneously active
tasks.

-53-

Guidelines to Select, Configure and Use an Ada Runtime Environment

7) Deadlock or permanent blocking detection & support for actions on same. Not
supported when interrupt entries are used in the application.

c. Time support.

1) Clock resolution. Clock resolution is determined by the user definition of the basic
real-time clock period.

2) DURATION characteristics.
Type DURATION is delta 2.0**(-14) range -86_400.00 .. 86_400.0;

3) TICK TICK has the value 1.0, but is unused. The effective TICK is designated by the
application builder in the configuration file.

4) Clock call overhead. 68 microseconds, for a 12 MHz, VME130 with 4 wait-states.

5) Typical time to reschedule when highest priority task times out. On the order of 30-40
microseconds.

6) Time operations overhead. Not currently measured.

7) Configurability. As described in the conﬁgurability section, the user designates the
basic period of the real-time clock used to drive all time based operations. The user
also provides timer initialization and interrupt handler routines, as well as
initialization of date and time.

d. Dynamic memory management approach.

Several classes of objects are allocated on the heap. These include objects created by the
execution of an Ada allocator, task stacks, arbitranly large objects and compiler generated
temporaries. Special representations within the heap are used when objects are 32 bits or
smaller, and when dynamic objects have global scope.

When an access type is defined in a task or subprogram, all objects of the type are
automatically deallocated when the scope defining the type is exited. This implementation
has the same effect as explicitly applying pragma CO OLLED to each access type in the
application. Compiler generated temporaries are reclaimed as soon as they are no longer
needed. A task’s stack is reclaimed as soon as the task terminates.
UNCHECXED_DEALLOCATION reclaims an access object immediately.

e. Exception management approach..

The exception management implementation follows the philosophy described in the Ada
Rationale document, which considers excr;tions to be exceptional, and not a normal
method for transferring flow of control. The 1anguage designers felt that there should be no
overhead at subprogram linkage related to exception management. Alsys has followed this
philosophy by using a table dniven, interpretive approach to exception management, which
do_esdnot penalize subprogram linkage sequences for the possibility of an exception being
raised.

-54-

Guidelines to Select, Configure and Use an Ada Runtime Environment

f. Support for multiprocessor configurations.

There is no explicit support for multiprocessor configurations in the current release, but it is
possible to build program per processor systems.

g Support for multiprogramming.

There is no explicit support for multiprogramming in the current release, but it should be
possible for a user to build such a system, provided that careful attention is given to correct
setup of interrupt vectors.

h. Rendezvous implementation..

The rendezvous implementation uses the "naive” approach to execution of accept bodies:
on the stack of the callee, executed by the callee. This approach requires less overhead for
nested rendezvous implementation than alternative approaches. Parameters are always
passed in a parameter area, and are never copied into the context of the accept body.

The synchronization rendezvous case, where there is an empty statement list for the accept
body, is optimized and involves no context switches, unless the tasks are of unequal priority.

The selective wait statement is made reasonably “fair” in selection of among multiple open
entries by varying the starting point for processing of open alternatives for selection.

Rendezvous algorithms are load-insensitive: they do not depend on the number of active
tasks.
I11. Documentation provided to help user configure runtime:

For off-the-shelf product, Cross Development Guide As technology transfer, full
design documentation, 1 week training course and, consultant services.

IV. Services to customize the runtime:
No.
V. Cost of runtime source code:
Approximately $250,000.00, but it depends upon the specific situation.

VL. Source of Information: Vendor input and relevant compiler documentation supplied by
the vendor.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A.

Clock: 20MHz, M68020, 1 Megabyte on board DRAM: 32 bit address and data access;
1 wait state. Checks ON, Optimizations ON, Timer configured to 1024 Hz TICK.
PIWG test suite 1987.

PIWG Test Description Micro -
Name _ seconds
A000091 Dhrystone 334
A000092 Whetstone benchmarks, using manufacturer’s math routines 558*
A000093 Whetstone benchmarks, using standard math routines 310*
C000001 Task creation/terminate, task type declared in package. 1372.8
C000002 Task creation/terminate, task type declared in procedure. 1457.3
C000003 Task creation/terminate, task type declared in block. 1450.6
D000001 Dynamic array, use and deallocation. 8.1
D000002 Dynamic array elaboration and initialization. 6034.0
D000003 Dynamic record allocation and deallocation. 38.5
D000004 . Dynamic record elaboration and initialization. 9456.1
E000001 Raise and handle an exception locally. 1044.4
E000002 Raise and handle an exception in a package. 318RK.7
E000003 Raise and handle an exception nested 3 deep in procedures. 5554.6
E000004 Raise and handle an exception nested 4 deep in procedures. 6242.8
E00000s Raise and handle an exception in a rendezvous. 10098.5
F000001 Set a BOOLEAN flag using a logical equation. 4.8
F000002 Set a BOOLEAN flag using an "if" test. 5.2
G000005 TEXT IO.Get an INTEGER from a local string. 334.2
G000006 TEXT_10.Get a FLOAT from a local string. 1822.6
H000001 BOOLEAN operations on entire PACKed array. 41.8
H000002 BOOLEAN operations on entire array (not packed). 41.8
H000003 BOOLEAN operations on components of a PACKed array. 235.1
H000004 BOOLEAN operations on components of an array (not packed). 235.1
HO000005 Move INTEGER to INTEGER (Unchecked Conversion). 4.0
H000006 Move array of 10 Floats to record (Unchecked_Conversion) 3.8
H000007 Store and extract bit fields, defined by representation clauses. (1)
L000001 Simple "for" loop. 4.1
L000002 Simple "while" loop. 5.3
L.000003 Simple "exit" loop. 5.1
L.000004 Loop of 5 iterations with pragma OPTIMIZE (Time). 5.0
L00000S Loop of § iterations with pragma OPTIMIZE (Space). 5.0
P000001 Procedure call and return (inlineable), no parameters. 0.2
P000002 Procedure call and return (not inlineable), no parameters. 6.7
P000003 Procedure call and return (compiled separately). 6.3
P000004 Procedure call and return (Pragma INLINE used). 0.0

-55.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Checks ON, Optimizations ON,
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
P000005 Procedure call and return (one parameter, in INTEGER). 7.2
P000006 Procedure call and return (one parameter, out INTEGER). 8.6
P000007 Procedure call and return (one parameter, in out INTEGER). 9.0
P000010 Procedure call and return (ten parameters, in INTEGER). 19.6
P000011 Procedure call and return (twenty parameters, in INTEGER). 344
P000012 Procedure call and return (ten parameters, in record_type). 20.9
P000013 Procedure call and return (twenty parameters, in record_type). 359
T000001 Minimum rendezvous, entry call and return. 163.8
'T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 228.3
T000004 Task entry call and return (one task, two entries). 3279
T000005 Active entry and return (ten tasks, one entry each). 2138
T000006 Task entry call and return (one task, ten entries). 711.6
T000007 Minimum rendezvous, entry call and return. 103.6
"T000008 Passing an integer from producer to consumer 616.6

* WHETSTONE : units are in KWIPS not in microseconds.
(1) Uses bit level record representation clauses. Bit level representation clauses are not

supp;)rted in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

-55.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A. Clock: 20MHz, M68020, 1 Megabyte on board
DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only enabled.
Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
A000091 Dhrystone ‘ 280
A000092 Whetstone benchmarks, using manufacturer’s math routines 542*
A000093 Whetstone benchmarks, using standard math routines 296*
C000001 Task creation/terminate, task type declared in package. 1377.1
C000002 Task creation/terminate, task type declared in groce ure. 1463.5
C000003 Task creation/terminate, task type declared in block. 1454.3
D000001 Dynamic array, use and deallocation. 11.6
D000002 Dynamic array elaboration and initialization. 2432.8
D000003 Dynamic record allocation and deallocation. 37.8
D000004 Dynamic record elaboration and initialization. 24497
E000001 Raise and handle an exception locally. 1038.3
E000002 Raise and handle an exception in a package. 3201.6
E000003 Raise and handle an exception nested 3 deep in procedures. 5545.3
E000004 Raise and handle an exception nested 4 deep in procedures. 6219.3
E000005 Raise and handle an exception in a rendezvous. 10095.8
F000001 Set a BOOLEAN flag using a logical equation. 0.0
F000002 Set a BOOLEAN flag using an "if" test. 0.0
G000005 TEXT 10.Get an INTEGER from a local string. 305.5
G000006 TEXT _I0.Get a FLOAT from a local string. 1704.3
H000001 BOOLEAN operations on entire PACKed array. 44.0 (1)
H000002 BOOLEAN operations on entire array (not packed). 44.0
H000003 BOOLEAN operations on components of a PACKed array. 104.8 (1)
H000004 BOOLEAN operations on components of an array (not packed). 104.8
HO000005 Move INTEGER to INTEGER (Unchecked_Conversion). 0.0
H000006 Move a1 -ay of 10 Floats to record (Unchecked_Conversion) 0.0
HO000007 Store and extract bit fields, defined by representation clauses. (2)
L.000001 Simple "for" loop. 23
L000002 Simple "while" loop. 3.2
L000003 Simple "exit" loop. 3.4
L000004 Loop of S iterations with pragma OPTIMIZE (Time). 2.9
L.000005 Loop of § iterations with pragma OPTIMIZE (Space). 2.9
P000001 Procedure call and return (inlineable), no parameters. 0.0
P000002 Procedure call and return (not inlineable), no parameters. 6.6
P000003 Procedure call and return (compiled separately). 9.0
P000004 Procedure call and return (Pragma INLINE used). 2.9

-55.3-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Alsys PIWG results for MVME 133A (Continued). Clock: 20MHz, M68020, 1 Megabyte on
board DRAM: 32 bit address and data access; 1 wait state. Stack overflow checking only
enabled. Timer configured to 1024 Hz TICK. PIWG test suite 1987.

PIWG Test Description Micro -
Name seconds
P00000S Procedure call and return (one parameter, in INTEGER). 10.0
P000006 Procedure call and return (one parameter, out INTEGER). 11.6
P000007 Procedure call and return (one parameter, in out INTEGER). 13.0
P000010 Procedure call and return (ten parameters, in INTEGER). 18.4
P000011 Procedure call and return (twenty parameters, in INTEGER). 38.1
P000012 Procedure call and return (ten parameters, in record_t?e). 19.6
P000013 Procedure call and return (twenty parameters, in record_type). 40.9
T000001 Minimum rendezvous, entry call and return. 162.6
T000002 Task entry call and return (one task, one entry). 169.0
T000003 Task entry call and return (two tasks, one entry each). 2279
TO00004 | Task entry call and return (one task, two entries). 330.3
T000005 Active entry and return (ten tasks, one entry each). 2134
T000006 Task entry call and return (one task, ten entries). 720.8
T000007 Minimum rendezvous, entry call and return. 102.8
T000008 Passing an integer from producer to consumer 622.9

* WHETSTONE : units are in KWIPS not in microseconds.

(1) Tests the effects of boolean operations on packed arrays. This feature is not
implemented in version 3.5, but will be implemented for version 4.1 (October 1988).

(2) Uses bit level record representation clauses. Bit level representation clauses are not

supp())rted in version 3.5, but will be implemented for version 4.1 of the compiler (October
1988).

Guidelines to Select, Configure and Use an Ada Runtime Environment

RUNTIME STORAGE REQUIREMENTS

It depends on which executive is used (VRTX, VRTX32, or ARTK), but in general,
these approximations apply:

Max Sequential, approximately 25 K Bytes
Max Tasking, approximately 35 K Bytes
Max I/0O, +20 K Bytes.

Ql:
Al:

Q2:
A2:

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

What is the resolution of the clock used for delay statements?
Determined by user.

How long, and for what reasons are interrupts disabled?
Max approximately 20-30 microseconds for critical code.

Q3: What rendezvous optimizations are performed? For example, when can the called
task ogcrate in the same context as the calling task?
A3:

ased upon past implementations using Habermann-Nassi and Order of Arrival

schemes for rendezvous execution, Alsys has abandoned these "optimizations" because they
incur too much bookkeeping overhead. Accept bodies with empty statement lists are
optimized to avoid context switching.

Q4:
Ad:

Qs:

What are the restrictions for representation clauses?
All representation clauses are currently supported to the byte level, except:

- bit level representation clauses (V4.1)

- pragma PACK

- change of representation for derived record types

- T'SIZE for types declared in a generic unit

- TSMALL for fixed point types must be a power of 2, and the absolute value of the
exponent must be less than 31

. %numeration clauses are not -allowed if there is a range constraint on the parent
subtype

- adtgxl')ess representation clauses for program units

- address clauses for interrupt entries are only supported when there are no
parameters for the task entry. An alternative mechanism is supplied for entries with a
single parameter.

What scheduling algorithms are supported? For example, time slicing, dynamic

priorities, run-until-blocked, etc.

AS:

Qé6:

A6:

Q7:

AT:

Q8:
AS8:

Preemptive, round-robin with time slicing option.

What are the restrictions on pragma INLINE?
Routines must be non-recursive.

Is code "ROM"able?
Yes.

Qre machine code inserts supported?
o.

Guidelines to Select, Configure and Use an Ada Runtime Environment

Q9: What object types are supported by pragma SHARED?
A9: Scalars.

Q10: What items are configurable for the runtime system?
A10: The items below are configurable for the runtime system.

- Max. No. of Tasks

- Task Time Slice Default

- Timer Resolution

- Exception Trace

- Default Stack Sizes

- Terminal I/O

- Optional Numeric Co-processor

Also see Technical Summary preceding this section.

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
CAP Industry, Ltd. MicroVAX 11 80286, Intel iAPX 80286
Compiler version 2.1 (under MicroVMS 4.6) protected mode

(bare machine)

DEGREE OF CONFIGURABILITY

L Linker Capability:
- Any part of a library unit being required loads the entire unit. (Unoptimized)
- Individual subprograms and/or data objects may be extracted from packages only.
(Optimized)

I1. Customization of the Runtime:

- By pragmas
- By compiler switches
- By linker switches
- By Modifying-Replacing the source to selective runtime routines provided with the
purchase of the compiler (i.e. Device Drivers).
I11. Documentation provided to help user configure runtime:

- CAPTACS - E286 Users Guide (Contains chapters such as "Programming Guide",
"Configurability", and "Nonstandard Programming Interfaces").

IV. Services to customize the runtime:

- CAP Industry Ltd. does not provide services to customize the runtime for a
particular application.

V. Cost of runtime source code:
- $60,000

V1. Source of Information: Vendor Input

-59-

Guidelines to Select, Configure and Use an Ada Runtime Environment

CAP Industry Limited

Hostt MicroVAX (VMS 4.6)

Target: Intel 1APX 80286 (protected mode>
Versiom 2.2

30500/l/

A
30000

30500

28000
26000
24000
22000
20000

v 18000

+
3 16000

::;I:?ﬁ\; 19500

14000
12000
10000

8000 | A 7
e000 | LA

4000 | V4 VA V] Vs G Vs
2000 | WA VA Vi Vod Vi Vi

- Included in Processor Management
- Included in Processor Management

+
£
[s)}

b

a

~N

—

Time Mgmt. R
Task Activation
Task Termination
CLC Seguences MR H H TSI’ T’

+
€
]

x
c
0

4+
Q
@
U
x

LJ

Processor Mgn‘t
Interrupt Mgnt \

Debugger Supportxg 00

Dynamic Memory Mgmt, N

Sum of ALL components = 143,000 bytes
* Component was supplied by vendlor.
»x Plus Driver {approximately 2,000 bytes)

-60-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 976.6 microseconds, configurable

Q2: How long, and for what reasons are interrupts disabled? _
A2: Intermdpts are disabled in order to protect the scheduler and memory manager while
they are updating data structures.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: Synchronization rendezvous: If the accepting task has a null accept and equal or lower
priority, the calling task will not stop, but the accepting task will become active.

Interrupts can be handled in the environment of the interrupted task if no interactions with
other tasks occur during the rendezvous.

Q4: What are the restrictions for representation clauses?
A4: ﬁl; Representation clauses are not supported for derived types.
2) Enumeration representation clauses are not supported for CHARACTER and
BOOLEAN types.
(3) Record representation clauses are supported with the following constraints
a. word alignment is mod 16
b. the ordering of bits within a byte is right to left.
(4) Length clause is supported:
a. for the attribute ’storage_size for task types.
b. for the attribute ’size. The value specified is checked to be sufficient but
otherwise ignored.
c. for the attribute ’small.

QS5: What scheduling algorithms are supported? For example, time slicing, dynamic
priorities, run-until-blocked, etc.
AS: Round-robin algorithm for tasks with the same priority.

Q6: What are the restrictions on pragma INLINE?
A6: None.

Q7: Is code "ROM"able?
A7: Yes.

Q8: Are machine code inserts supported?
A8: No.

Q9: What object types are su%ported by pragma SHARED?
A9: The restrictions on shared variables are only those specified in the LRM.

Q10: What items are configurable for the runtime system?
Al10: The items below are configurable for the runtime system.

-61-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- Maximum number of tasks (Heap space/Table space)
- Timer Resolution

- Default stack sizes

- Default task priority

- Optional numeric co-processor

- Fast interrupt entry

- Terminal I/O

Additional items:

- Device drivers

- Startup, normal and exception termination
- Number and type of interrupt devices

- Task lockup handling

-62-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the Intel 80286

package SYSTEM is

type SEG_OFFSET is new INTEGER;
type SEG_COLLECTOR is new INTEGER;

type ADDRESS is private;

type SUBPROGRAM_VALUE is private;
type NAME is (CAPTACS_E286);
type SYSTEM_NAME : constant NAME := CAPTACS_E286;

STORAGE_UNIT : constant

1= 8;

MEMORY_SIZE : constant := 2%%*24;

-- System-dependent declarations:

MIN_INT : constant
MAX INT ¢ constant
MAX DIGITS : constant
MAX MANTISSA : constant
FINE_DELTA : constant
TICK ¢ constant

-(2**31);

(2%%31) - 1;

15;

31;

1.0/ (2%* (MAX_MANTISSA - 1));
1.0/ (2%*10) ;

oe o0 a0 se 00 oo

-- Otiier system-dependent declarations:

subtype PRIORITY is INTEGR range 0 .. 15;

private

-- Types ADDRESS and SUBPROGRAM_VALUE are private

end SYSTEM:;

-63-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package STANDARD for the Intel 80286

Package STANDARD is not specified in Ada by CAPTACS. They provided
information that indicates the following numeric types are supported.

long_integer is a predefined 32 bit integer type

float is a predefined 32 bit twos compliment floating point type,
with 24 bits in the mantissa and an exponent range of -125 to +128

long_float is a predefined 64 bit twos compliment floating point type,
with 53 bits in the mantissa and an exponent range of -1021 to +1024

short_fixed is a predefined 16 bit twos compliment fixed type

fixed is a predefined 32 bit twos compliment fixed type

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
DDC-I DEC MicroVAX II 8086, Intel iSBC 86/05A,
Compiler version 4.2 (under MicroVMS 4.4) 8086, Titan SECS 86/20,

Compiler version 4.2

DEC-VAX-11/7xx

80186, Intel iSBC 186/03A
80286, Titan SECS 286/20
80386, Intel iSBC 386/21,
(All bare machines)

8086, Intel iSBC 86/35

VAX-8x0ax,VAX station, 80186, Intel iSBC 186/03A
& MicroVAX Series (under 80286, Intel iSBC 286/12
VAX/VMS 4.6 or 80286, Intel iSBC 286/12
MicroVAX/VMS 4.6) protected mode)
0386, Intel iSBC 386/21
80386, Intel iSBC 386/21
rotected mode)
All bare machines)
All Derived
Compiler version 4.2 DEC MicroVAX I 80386, Force CPU-386
(under MicroVMS 4.4) VMEbus
(bare machine)
DEGREE OF CONFIGURABILITY
I. Linker Capability:

- Only data objects that are referenced are allocated memory.

I1. Customization of the Runtime:

- By pragmas

- By compiler switches

- By Modifying-Replacing the source to selective runtime routines provided with
the purchase of the compiler (i.e. Device Drivers).
The runtime system is divided into two parts:

The permanent part that is independent of the execution environment.

The user conﬁ%urable part which consists of user configurable code and data. The
e

user configurab

code 1s typically a set of assembly language routines, called from the

permanent part of the runtime system and generated Ada code.

-65-

Guidelines to Select, Configure and Use an Ada Runtime Environment

In the permanent part of the runtime system, when a module is not needed, it is not
included during the linking process. In the user configurable code, it is up to the user
to eliminate code that is not used. Eliminating unneeded user configurable modules
can have a large effect in reducing the overall size of the RTS (it also reduces the
number of modules in the permanent part as well), since the user configurable code
makes calls to the permanent part.

There are two RTS versions supported: a tasking version and a non-tasking version.
Ada Linker Options:

- Maximum Number of Tasks

- Task Time Slice Default

- Timer Resolution

- Default Stack Sizes

- Default Task Priority

- Optional Numeric Co-processor

RTS Extension:

- Dynamic Task Priority

- Semaphore Operations

- Exception Trace

- Fast Interrupt Entry

- Terminal I/O

- ROMable Code .

- RTS variant implements strict priority scheduling and priority inheritance.

Real-time Features Supported:

- Address Clauses

- Record Representation Clauses

- Length Clauses

- Enumeration Representation Clauses
- Interrupt Entries

- Machine Code Insertions

- Pragma Interface

- Pragma Inline

- All Chapter 13 Features

Tools: (Allows Standard Intel Tool Usage)
- In-circuit emulation
- Performance Analyzer
- Assembler, Linker, Locator
- Debuggers
- Powertul Symbolic Debugger (Q4 1988)
II1. Documentation provided to help user configure runtime:

- Run-Time System detailed design for DACS-80x86 - DDC-I 5801/RPT/70 issue 1

-66-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Provided by DDC-I via training classes and consulting services.
- Cost: Daily consulting rates and expenses.

V. Cost of runtime source code:
- $30,000 to $50,000
VL. Source of Information: Vendor Input, Compiler Manuals, User Input.

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 8086. Clock : 8MHz, 1 wait-state, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description ' Micro -
Name seconds
A000091 "Dhrystone" benchmark 1684.5
A000093 "Whetstone" benchmark 119*
C000001 Task creation/terminate, task type declared in package. 2328.0
C000002 Task creation/terminate, task type declared in procedure. 1816.0
C000003 Task creation/terminate, task type declared in block. 1812.7
D000001 Dynamic array, use and deallocation. 40.0
D000002 Dynamic array elaboration and initialization. 32227.0
DO000003 Dynamic record allocation and deallocation. 100.5
D000004 Dynamic record elaboration and initialization. 40830.0
E000001 Raise and handle an exception locally. 3729
E000002 Raise and handle an exception in a package. 559.1
E000004 Raise and handle an exception nested 4 deep in procedures. 653.1
F000001 Set a BOOLEAN flag using a logical equation. 9.9
F000002 Set a BOOLEAN flag using an "if" test. 11.1
L000001 Simple "for" loop. ® 109
L000002 Simple "while" loop. 10.4
L000003 Simple "exit" loop. 104
P000001 Procedure call and return (inlineable), no parameters. 224
P000002 Procedure call and return (not inlineable), no parameters. 224
P000003 Procedure call and return (compiled separately). 19.9
P000004 Procedure call and return (Pragma INLINE used). 17.6
P0O0000S Procedure call and return (one parameter, in INTEGER). 249
P000006 Procedure call and return (one parameter, out INTEGER). - 247
P000007 Procedure call and returr. one parameter, in out INTEGER). 29.6
P000010 Procedure call and return (ten parameters, in INTEGER). 60.3
P000011 Procedure call and return (twenty parameters, in INTEGER). 99.3
P000012 Procedure call and return (ten parameters, in record_tme). 120.2
P000013 Procedure call and return (twenty parameters, in record_type). 239.0
T000V01 Minimum rendezvous, entry call and return. 430.3
T000002 Task entry call and return (one task, one entry). 426.6
T000003 Task entry call and return (two tasks, one entry each). 444.9
T000004 Task entry call and return (one task, two entries). 712.9
"T000005 Active entry and return (ten tasks, one entry each). 416.3
T000006 Task entry call and return (one task, ten entries). 1102.5
T000007 Minimum rendezvous, entry call and return. 285.3

* A000093 : units are in KWIPS not in microseconds.

Guidelines toSelect, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80186. Clock : 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. 974.3
A000093 "Whetstone" benchmark. 145*
C000001 Task creation/terminate, task type declared in package. 14343
C000002 Task creation/terminate, task type declared in procedure. 1054.7
C000003 Task creation/terminate, task type declared in block. 1054.7
D000001 Dynamic array, use and deallocation. 249
D000002 Dynamic array elaboration and initialization. 219922
D000003 Dynamic record allocation and deallocation. 62.6
D000004 Dynamic record elaboration and initialization. 24101.6
E000001 Raise and handle an exception locally. 245.1
E000002 Raise and handle an exception in a package. 373.8
E000004 Raise and handle an exception nested 4 deep in procedures. 432.7
F000001 Set a BOOLEAN flag using a logical equation. 7.2
F000002 Set a BOOLEAN flag using an "if" test. 7.8
L.000001 Simple "for" 1oop. 6.9
L.000002 Simple "while" loop. 6.2
L000003 Simple "exit" loop. 6.6
P000001 Procedure call and return (inlineable), no parameters. 13.0
P000002 Procedure call and return (not inlineable), no parameters. 13.0
P000003 Procedure call and return (compiled separately). 10.6
P000004 Procedure call and return (Pragma INLINE used). 8.3
P00000S Procedure call and return (one parameter, in INTEGER). 13.5
P000006 = Procedure call and return (one parameter, out INTEGER). 15.6
P000007 Procedure call and return (one parameter, in out INTEGER). 174
P000010 Procedure call and return (ten parameters, in INTEGERE 343
P000011 Procedure call and return (twenty parameters, in INTEGER). 58.4

P000012 Procedure call and return (ten parameters, in recorthme). 80.

P000013 Procedure call and return (twenty parameters, in record_type). 159.3
T000001 Minimum rendezvous, entry call and return. 2559
T000002 Task entry call and return (one task, one entry). 2534
T000003 Task entry call and return (two tasks, one entry each). ' 264.3
T000004 Task entry call and return (one task, two entries). 414.1
TO000005 Active entry and return (ten tasks, one entry each). 2473
T000006 Task entry call and return (one task, ten entries). 617.2
T000007 Minimum rendezvous, entry call and return. 168.0

*A000093 : units are in KWIPS not in microseconds.

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80286. Clock : 8MHz, zero wait-states, real mode, (all tests
compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. ’ 483.9
A000093 "Whetstone" benchmark. 172*
C000001 Task creation/terminate, task type declared in package. 731.2
C000002 Task creation/terminate, task type declared in procedure. 557.3
C000003 Task creation/terminate, task type declared in block. 555.4
D000001 Dynamic array, use and deallocation. 10.6
D000002 = Dynamic array elaboration and initialization. 10839.8
D000003 Dynamic record allocation and deallocation. 28.5
D000004 Dynamic record elaboration and initialization. 11445.3
E000001 ‘Raise and handle an exception locally. 144.2
E000002 Raise and handle an exception in a package. 214.2
E000004 - Raise and handle an exception nested 4 deep in procedures. 219.6
F000001 Set a BOOLEAN flag using a logical equation. 32
F000002 Set a BOOLEAN flag using an "if" test: 35
L000001 Simple "for" loop. 3.8
L.000002 Simple "while" loop. 3.3
L.000003 Simple "exit" loop. 3.8
P000001 Procedure call and return (inlineable), no parameters. 6.7
P000002 Procedure call and return (not inlineable), no parameters. 6.7
P000003 Procedure call and return (compiled separately). 6.4
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in GER& 74
P000006 Procedure call and return (one parameter, out INTEGER). 8.9
P000007 Procedure call and return (one parameter, in out INTEGER). 9.3
P000010 Procedure call and return (ten parameters, in INTEGER). 17.0
P000011 Procedure call and return (twenty parameters, in INTEGER). 28.0
P000012 Procedure call and return (ten parameters, in record_l{e). 315
P000013 Procedure call and return (twenty parameters, in record_type). 58.5
T000001 Minimum rendezvous, entry call and return. 136.6
T000002 Task entry call and return (one task, one entry). 134.

T000003 Task entry call and return (two tasks, one entry each). 1416
T000004 Task entry call and return (one task, two entries). 2278
TO000005 Active entry and return (ten tasks, one entry each). 1322
T000006 Task entry call and return (one task, ten entries). 350.6
T000007 Minimum rendezvous, entry call and return. 93.9

* A000093 : units are in KWIPS not in microseconds.

-70-

Guidelir..s to Select, Configure and Use an Ada Runtime Environment

DDC-I PIWG results for DACS 80386. Clock : 16MHz, zero wait-states, real- mode, (all
tests compiled with OPTIMIZE and NOCHECKS). PIWG test suite 1988.

PIWG Test Description Micro -
Name seconds
A000091 "Dhrystone" benchmark. 240.6
A000093 "Whetstone" benchmark. 776*
C000001 Task creation/terminate, task type declared in package. 343.6
C000002 Task creation/terminate, task type declared in procedure. 265.2
C000003 Task creation/terminate, task type declared in block. 264.1
D000001 Dynamic array, use and deallocation. 5.1
D000002 Dynamic array elaboration and initialization. 5605.5
D000003 Dynamic record allocation and deallocation. 15.5
D000004 Dynamic record elaboration and initialization. 6303.7
E000001 Raise and handle an exception locally. 64.4
E000002 Raise and handle an exception in a package. 97.2
E000004 Raise and handle an exception nested 4 deep in procedures. 104.9
F000001 Set a BOOLEAN flag using a logical equation. 1.5
F000002 Set a BOOLEAN flag using an "if" test. 1.4
1000001 Simple "for" loop. 1.7
- 000002 Simple "while" loop. 1.6
1000003 Simple "exit" loop. 1.7
P000001 Procedure call and return (inlineable), no parameters. 4.3
P000002 Procedure call and return (not inlineable), no parameters. 43
P000003 Procedure call and return (compiled separately). 4.0
P000004 Procedure call and return (Pragma INLINE used). 0.0
P00000S Procedure call and return (one parameter, in INTEGER). 4.5
P000006 Procedure call and return (one parameter, out INTEGER). 5.0
P000007 Procedure call and return (one parameter, in out INTEGER). 5.3
P000010 Procedure call and return (ten parameters, in INTEGER). 94
P000011 Procedure call and return (twenty parameters, in INTEGER). 14.1
P000012 Procedure call and return (ten parameters, in record_t{e). 17.6
P000013 Procedure call and return (twenty parameters, in record_type). 33.2
T000001 Minimum rendezvous, entry call and return. 67.8
T000002 Task entry call and return (one task, one entry). 67.7
T000003 Task entry call and return (two tasks, one entry each). 70.6
T000004 Task entry call and return (one task, two entries). 110.0
T000005 Active entry and return (ten tasks, one entry each). 66.2
T000006 Task entry call and return (one task, ten entries). 164.
T000007 Minimum rendezvous, entry call and return. 45.7

* A000093 : units are in KWIPS not in microseconds.

71-

Guidelines to Select, Configure and Use an Ada Runtime Environment

DDC-1I, Inc.

VAX / VMS

Host:

Target:

Intel 8086, 80186, 80286, 80386

4.2

Version:

0ooL

ooﬂ..onmmsammxmmzox

000S

.u%mzooayg
NN 00¢ &.pamz

saduanbas ‘99)

0/1

FuawaBoUD UOSSID0Ud Ul PIPNDU] - [UOI} DUIWUB | SO

yudwabouvy JU0SS3I0U4 Ul PSPNDU] — [UOILDAIRDY SO

juswaboudyy 40SS310uUd Ul PIPNIDUT - |uwbly

00ST |) [3ubp

"3Wbp

'3 w6

O 3uwbN

] 3ubn

7000
6500
6000
5500
S000
4500

W 4000
3500

M 3000
2500
2000

SNOAZ3pUaY
uot3danx3
auwl)
3dnuuazu]
J0SS330uy

AJouwap Diwouhg

- Sum Of All Components

700 - 20200 bytes

72-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Appendix F Notes
The following excerpts are taken from the DDC-I Ada Compiler System User’s Guide. [10]
Representation Clause Restrictions
The DACS-80x86 fully supports the "SIZE representation for derived types.
Length Clause

When using the SIZE attribute for discrete types, the maximum value that can be
specified is 16 bits.

SIZE is only obeyed for discrete types when the type is a part of a composite object,
e.g. arrays or records, for example:

e byte is range 0..255;
or byte’size use 8;

v

sixteen_bits_allocated : byte; -- one word allocated
eight_bit_per_element : array (0..7) of byte; -- four words allocated

type rec is
record
cl, c2 : byte; -- eight bits per component
end record;

Using the STORAGE_SIZE attribute for a collection will set an upper limit on the
total size of objects allocated in this collection. If further allocation is attempted, the
exception STORAGE_ERROR is raised.

When STORAGE_SIZE is specific in a length clause for a task, the process stack
area will be of the specified size. The process stack area will be allocated inside the
“standard" stack segment.

Enumeration Representation Clause

Enumerdtion representation clauses may specify representations in the range of
INTEGER’FIRST + 1.INTEGER’LAST - 1.

Record Representation Clauses

When :',epresentation clauses are applied to records the following restrictions are
imposer..

- the component type is a discrete type different from LONG_INTEGER

- the component is an array with a discrete elemeat different from
LONG Glilt?xype d pe

73-

Guidelines to Select, Configure and Use an Ada Runtime Environment

- the storage unit is 16 bits

- a record occupies an integral number of storage units

- a record may take up a maximum of 32K storage units

- a component must be specified with its proper size (in bits), regardless of
whether the component is an array or not

- if a non-array component has a size which equals or exceeds one storage unit
(16 bits) the component must start on a storage unit boundary, i.e. the
component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1,...) from the beginning
of the record, and M the require number of storage units (1, 2, ...)

- the elements in an array component should always be wholly contained in one
storage unit '

- if a component has a size which is less than one storage unit, it must be wholly
contained within a single storage unit:

component at N range X..Y;
where N is a s in previous paragraph,and 0 <= X <=Y <= 15,
When dealing with PACKED ARRAY the following should be noted:
- the elements of the array are packed into 1, 2, 4 or 8 bits

If the record type contains components which are not covered by a component clause,
they are allocated consecutively after the component with the value. Allocation of a
record component without a component clause is always aligned on a storage unit
boundary. lBloles created because of component clauses are not otherwise utilized by
the compiler.

Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the outermost level in a
library package, any alignment is accepted.

- If the record declaration is done at a given static level (higher than the
outermost library level, i.e., the permanent area), only word alignments
are accepted.

- Any record object declared at the outermost level in a library ‘Eackage
will be aligned according to the alignment clause specified for the type.
Record o Jiects declared elsewhere can only be aligned on a word
boundary. If the record type has been associated a different alignment,
an error message will be issued.

- If a record type with an associated alignment clause is used in a
composite type, the alignment is required to be one word; an error
message is issued if this is not the case.

-74-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Implementation-Dependent Names for Implementation-Dependent Components
None defined by the compiler.
Address Clauses

This section describes the implementation of address clauses and what types of entities may
have their address specified by the user.

Objects

Address clauses are supported for scalar and composite objects whose size can be
determined at compile time.

Task Entries

The implementation supports two methods to equate a task entry to a hardware
interrupt through an address clause:

1.) Direct transfer of control to a task accept statement when an interrupt
occurs (requires use of the pragma INTERRUPT_HANDLER).

2.) Mapping of an interrupt onto a normal conditional entry call, i.e., the
entry can be called from other tasks without special actions, as well as
being called when an interrupt occurs.

Fast Interrupt Entry

Directly transferring control to an accept statement when an
interrupt occurs requires the implementation dependent pragma
INTERRUPT. DLER to telf the compiler that the task is an
interrupt handler. By using this pragma, the user is agreeing to
place certain restrictions on the tasi in order to speed up the
software response to the hardware interrupt. Consequently, use of
this method to capture interrupts is much more efficient than the
general method.

The following constraints are placed on the task:
1.) It must be a task object, i.e., not a task type.

2.) The pragma must appear first in the specification of the
task object.

3.) All entries of the task object must be single entries with
no parameters.

4.) The entries must not be called form any task.
5.) The body of the task object must not contain anything
other than simple accept statements (potentially enclosed in

-75-

Guidelines to

Unchecked Conversions

Select, Configure and Use an Ada Runtime Environment

a loop) referencing only global variables, i.e.,, no local
variables. In the statement list of a simple accept statement,
it is allowed to call normal single and parameterless, entries
of other tasks, but no other tasking constructs are allowed.
The call to another task entry, in this case, will not lead to an
immediate task context switch, but will return to the caller
when complete. Once the accept is completed, the task
priority rules will be obeyed, and a context switch may occur.

Normal Interrupt Entry

Mapping of an interrupt onto a normal conditional entry call puts
the following constraints on the involved entries and tasks:

1.) The affected entries must be defined in a task object only
(not a task type).
2.) The entries must be single and parameterless.

Any interrupt entry, which is not found in an interrupt handler (first
method), will lead to an update of the interrupt vector segment at
link time. The interrupt vector segment will be updated to point to
the interrupt routine generated by the compiler to make the task
entry call. The interrupt vector segment is part of the user
configurable data and consists of a segment, preset to the
"standard” interrupt routines (e.g., constraint_error).

Unchecked conversion is only allowed between objects of the same "size".

Guidelines to Select, Configure and Use an Ada Runtime Environment

Package SYSTEM for the DACS-80X86

package SYSTEM is

type Word is new Integer:

type LongWord is new Long_Integer:
type UnsignedWord is range 0..65535;
for UnsignedWord’/SIZE use 16;

subtype SegmentId is UnsignedWord:;
type Address is record
offset : UnsignedWord;
segment : SegnentId;
end record;
subtype Priority is Word range 0..31;

type Name is (iAPX86, iAPX1826, iAPX286, iAPX386);

System_Name : constant Name := iAPX186;
Storage_Unit : constant = 16;

Memory_Size : constant :t= 1_048_576;

Min_Int : constant t= -2_147_483_647 - 1;
Max_Int : constant := 2_147_483_647;

Max Digits : constant = 15;

Max_Mantissa : constant 1= 31;

Fine_Delta : constant t= 2.0 / MAX_INT:;

Tick : constant := 0.000_000_125;

type Interface_Language is (PIM86, ASM86) ;

type ExceptionlId is record
unit_number : UnsignedWord;
unique_number : UnsignedWord;
end record;

type TaskValue is new Integer:
type AccTaskValue is access TaskValue;

type Semaphore is

record
countar : UnsignedWord:;
first : TaskValue;
last ¢ TaskValue;
end record;
Initsemaphore : constant Semaphore’(l, 0, 0):

end SYS.EM;
-71-

Guideline to Select, Configure, and Use an Ada Runtime Environment

Description of Package STANDARD for DACS 80X86 Bare Machine Target

Integer Types

Three predefined integer types are implemented, SHORT_INTEGER, INTEGER, and

LONG_INTEGER.

They have the following attributes:

Real Address Mode and

SHORT_INTEGER’FIRST
SHORT_INTEGER’LAST
SHORT_INTEGER’SIZE

INTEGER'FIRST
INTEGER’LAST -
INTEGER’SIZE

LONG_INTEGER’FIRST
LONG_INTEGER’LAST
LONG_INTEGER'’SIZE

386 Protected Mode:

SHCRT_INTEGER’FIRST
SHORT_INTEGER’LAST
SHORT_INTEGER'’SIZE

INTEGER’FIRST
INTEGER’LAST
INTEGER’SIZE

LONG_INTEGER’FIRST
LONG_INTZGER’LAST
LONG_INTEGER’SIZE

Floating Point Types

Two predefined floating
They have the following

FLOAT’DIGITS
FLOAT’EPSILON
FLOAT'’FIRST

FLOAT’ LARGE
FLOAT’LAST
FLOAT/MACHINE_EMAX
FLOAT’MACHINE_EMIN

286 Protected Mode:

=128
127
16

-32_768
32_767
16

-2_147_483_648
2_147_483_647
32

-32_768
32_767
16

-2%%3]
2%*31-1
32

-2%%63
2**63-1
64

attributes:

6
9.53674316406250E~07
~3.40282366920938E+38
1.93428038904620E+25
3.40282366920938E+38
126

=127

point types are implemented, FLOAT and LONG_FLOAT.

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

FLOAT’MACHINE_MANTISSA = 24 ‘
FLOAT'/MACHINE_OVERFLOWS = TRUE
FLOAT’MACHINE_RADIX = 2
FLOAT’MACHINE_ROUNDS = TRUE

FLOAT’/MANTISSA = 21

FLOAT’/SAFE_EMAX = 126
FLOAT'’SAFE_LARGE = 8,50705917302346E+37
FLOAT’SAFE_SMALL = 5.87747175411144E-39
FLOAT’SIZE = 32

LONG_FLOAT’DIGITS 15

LONG_FLOAT’EPSILON
LONG_FLOAT’ FIRST

8.88178419700125E-16
-1.7976931348623157E+308

LONG_FLDAT'LARGE 2.57110087081438E+61
LONG_FLOAT’LAST 1.7976931348623157E+308
LONG_ —_FLOAT’MACHINE _EMAX = 1023

LONG_ FLdAT’MACHINE EMIN -1023

4.49423283715579E+307
2.22507385850720E-308
64

LONG_FLOAT'’SAFE_LARGE
LONG_FLOAT’SAFE_SMALL
LONG_FLOAT'SIZE

IDNG_FLOAT’MACHINE_MANTISSA = 53
LONG_FLOAT’/MACHINE_OVERFLOWS = TRUE
LONG_FLOAT/MACHINE_RADIX = 2
LONG_FLOAT’MACHINE_ROUNDS = TRUE
LONG_FLOAT’MANTISSA = 51
LONG_FLOAT’SAFE_EMAX = 1023

Fixed Point Types

Two kinds of anonymous predefined fixed point types are 1mplemented named
FIXED and LONG_FIXED. Note that these names are not defined in package
STANDARD, but only used here for reference.

16 bits are used for the representation of FIXED types, and 32 bits are
used for the representation of LONG_FIXED types.

For each of FIXED and LONG_FIXED there exists a virtual predefined type
for each possible value of SMALL. The posible values of SMALL are the
powers of two that are representable by a LONG_FLOAT value.

The lower and upper bounds of these types are:

lower bound of FIXED types
upper bound of FIXED types
lower bound of LONG_FIXED types
upper bound of LONG_FIXED types

-32_768 * SMALL
32_767 * SMALL

-2_ 147 483_648 * SMALL
2 147_ ~483_ _647 * SMALL

Guideline to Select, Configure, and Use an Ada Runtime Environment

Package STANDARD for DACS 80X86 Bare Machine Target (Continued)

A user defined fixed point type is represented as that predefined FIXED
or LONG FIXED type which has the largest value of SMALL not greater than
the user-specified DELTA, and which has the smallest range that includes
the user-specified range.

Any fixed point typeT has the following attributes:

T/MACHINE_OVERFLOWS
T’MACHINE_ROUNDS

TRUE
FALSE

The Type DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT =5

DURATION'/DELTA = DURATION’SMALL
DURATION’/FIRST = =131_072.00000
DURATION'’FORE =7

DURATION’LARGE = 1.31071999938965E05
DURATION’LAST = 131_071.06000
DURATION’MANTISSA = 31
DURATION'’SAFE_LARGE = 1.31071999938965E05
DURATION’SAFE_SMALL = DURATION’SMALL
DURATION’SIZE = 32 .
DURATION’SMALL = 6.10351562500000E-05 = 2**(-14)

Guidelines to Select, Configure and Use an Ada Runtime Environment

COMPILER VENDOR HOST PROCESSOR TARGET PROCESSOR
Digital Equipment Corp. VAX 8800 MicroVAX 11
Compiler version 1.5 (under VAX/VMS, (under VAXELN
Version 4.7) Toolkit, Version
3.0 in Combination
with VAXELN Adas,
Version 1.2)
Compiler version 1.5 All members of Any of the following
the VAX family: configurations:

MicroVAX I, VAXstation, MicroVAX I & 1II;
MicroVAX II, VAXstation I, rtVAX 1000; KA620
VAXstation 2000 (under (rtVAX 1000

MicroVMS, version 4.7); processor board);
MicroVAX 3500 & MicroVAX 3500 & 3600;
3600; VAXserver 3500, VAX-11/730

3600, & 3602; and & 750; and VAX
VAXstation 3200, 8500, 8530, 8550,

3500 (under VAX/VMS 8700, & 8800

version 4.7A); VAX-11/730, (under VAXELN Toolkit,
750, 780, 782, 785, VAX version 3.0 in

8200, 8250, 8300, 8350, combination with
8530,8550, 8600, 8650, VAXELN Ada version 1.2)
8700, and 8800 (under *Derived*

VAX/VMS, version 4.7)

DEGREE OF CONFIGURABILITY
I. Linker Capability:
- Any part of a library unit being required loads the entire unit.
II. Customization of the Runtime:
- By Fragmas
i

- By linker switches

y modifying/replacing the source to selective runtime routines provided by the
compiler vendor with the purchase of the compiler(i.e device drivers, etc).

I11. Documentation provided to help user configure runtime:

- The "VAXELN Ada User’s Manual" and "VAX Ada Run-Time Reference Manual".

-81-

Guidelines to Select, Configure and Use an Ada Runtime Environment

IV. Services to customize the runtime:

- Services to customize the runtime are not available by DEC.
V. Cost of runtime source code:

- The runtime source code is not for sale.

VI. Source of Information: Vendor Input.

-81.1-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Digital Equipment Corp.
VAX

Target: Micro VAX (under VAXELN toolkit)

Version: 1S

-81.2-

Guidelines to Select, Configure and Use an Ada Runtime Environment

Response to Critical Questions

Q1: What is the resolution of the clock used for delay statements?
Al: 10 milliseconds

Q2: How long, and for what reasons are interrupts disabled?
A2: VAXELN Ada runtime does not disable interrupts.

Q3: What rendezvous optimizations are performed? For example, when can the called
task operate in the same context as the calling task?

A3: The runtime uses inlined mutual exclusion operations to control access to resources
needed during rendezvous. It also performs deferred task switching. When an interrupt
arrives for a task that is the same priority as the active task, no switching occurs until the
current task becomes blocked.

Q4: What are the restrictions for representation clauses?
Ad: Generally, VAXELN Ada supports all implementation-dependent facilities of chapter
13 that have useful and desirable interpretation in the VAXELN environment.

Pragma‘PACK is supported. For a size specification for a discrete type, the given size must
not exceed 32 bits; the given size becomes the default allocation for all objects and
components of that tyge. or all other types, the given size must equal the size that would
apply in the absence of a size specification.

For a collection size specification, the given size becomes the initial and maximum size of
the collection. In the absence of a collection size specification, or for a size specification of
zero, no storage is initially allocated for a collection, and the collection is extended as

needed (until all virtual memory for the process is exhausted). If the value is less than zero,
CONSTRAINT_ERROR is raised.

For a task storage specification, the given size becomes the initial and maximum size for the
task activation Fthe task stack size). In the absence of a specification, or for a specification
of zero, a default size is used. In either case the task stack size is fixed at activation and is
not extendible. If the value is less than zero, CONSTRAINT_ERROR is raised.

For the specification of SMALL for a fixed point type, the given value must be a power of
2.0 (2.0**N, where -31 <= N <= 31) that is less than or equal to the delta of the type, and
that also satisfies the specified range of the type.

The implementation defined pragma TASK_STORAGE allows the specification of guard
pages for a task stack. (Guard pages form an area of memory which has no read or write

access and which thus helps in the detection of stack overflow (STORAGE_ERROR) when
non-Ada code is called from a task.

The implementation defined pragma MAIN_STORAGE allows the specification of a fixed
size stack and guard pages for the main program. In a VAXELN Ada program, the main
%ogram stack is always fixed and is not extended as needed. Thus Pragma

AIN_STORAGE is intended in particular to allow VAXELN Ada task sta